
Be My Guinea Pig: Information Spillovers in a

One-Armed Bandit Game∗

John R. Boyce†

David M. Bruner‡

Michael McKee§

December 16, 2008

Abstract: This paper tests the Nash equilibrium predictions of a two-period, two-player

one-armed bandit problem with information spillovers. Public information allows individuals

to learn from their own private outcomes and/or from the other player’s outcomes, creating

an incentive to free-ride. The results from our experiment suggest players undervalue in-

formation, yet they also behave strategically based on the value they place on information.

When only one player pulls the arm in the first period, it is the player predicted to do so

at least 96% of the time. Furthermore, players respond to information in a manner consis-

tent with Bayesian updating/reinforcement learning with deviations being attributable, in

part, to salience and cognitive dissonance. Estimated regression coefficients are statistically

significant and consistent with the summarized results.

Keywords: risk, uncertainty, sequential sampling, Bayesian, public goods, free-riding,

experiments

JEL Classifications: C91,D81

∗Acknowledgments: Funding for this was provided by a grant from the Social Sciences and Humanities Research Council
of Canada. This research was undertaken at the University of Calgary Behavioral and Experimental Economics Laboratory
(CBEEL). We would like to thank Diane Bischak, Rachel Croson, Curtis Eaton, and Francisco Gonzalez, for helpful comments
and suggestions.

†Professor of Economics, Department of Economics, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta,
T2N 1N4, Canada. email: boyce@ucalgary.ca.

‡Assistant Professor of Economics, Appalachian State University, Boone, North Carolina, 28608 U.S.A. email:
brunerdm@appstate.edu.

§Professor of Economics, Appalachian State University, Boone, North Carolina, 28608 U.S.A. email: mckeemj@appstate.edu.



Information Spillovers In a One-Armed Bandit Game Boyce, Bruner, and McKee

1 Introduction

There is a growing literature on information spillovers and strategic experimentation. The

most popular approach to modeling problems in this literature has been the armed-bandit

problem. In the classic one-armed bandit problem a gambler faces a slot machine that

pays a fixed return with an unknown probability. In each period, the gambler may choose

either to play the slot machine, at a cost, or not. Each time the gambler plays he obtains

additional information about the true probability that the machine pays. Traditionally, the

gambler’s problem is a tradeoff between experimentation and exploitation. The solution

to the problem yields an optimal stopping rule for the gambler to quit playing the slot

machine (Gittins, 1979).1 In the game we investigate, others also observe the gamble and

its outcome; hence there is a pure informational externality. In the presence of information

spillovers exploitation may be achieved through free-riding on others’ experimentation.

A Bayesian agent will form an expected probability of winning from her prior belief

and information, if any, provided from her own past draws as well as those draws she may

observe of other agents. Taking a draw when the outcome will be public knowledge is akin

to providing a public good—information. The Nash equilibrium in such public good settings

is zero provision unless the information is a spillover from an action taken for private payoff,

in which case, the provision level will be positive. The question is, do people actually behave

according to the Nash equilibrium? If not, theoretical models of many different decision

settings may fail to generate accurate predictions.

There are many decision settings in which such information spillovers may affect the level

of risk taking and potential policy actions to increase the production of beneficial information

by encouraging risk taking and/or compelling the public reporting of the outcomes. An (in-

complete) list of such settings would include research and development activities, especially

in settings when new information would inform others of the possibility of a bad outcome

(Dixit and Pindyck, 1999); initial public offerings (IPOs) in which the informational spillover

would inform others of the thickness of the security market—measured as the gap between

1The bandit problem owes its origins to (Robbins, 1952). In their survey, Bergemann and Välimäki (2006) describe the
different faces that economists have put on the slot machine. Rothschild (1974) was the first to employ it, in the context of a
firm experimenting with prices to learn about market demand. Weitzman (1979) and Roberts and Weitzman (1981) applied the
bandit setup to the problem of investment in R&D. Jovanovic (1979) has used the bandit framework in a model of competitive
labor markets where matching is important. Bergemann and Välimäki (1996) and Felli and Harris (1996) use the bandit problem
to study the division of surplus under uncertainty. Bergemann and Hege (1998) and Bergemann and Hege (2005) apply the
bandit problem to corporate finance decisions of venture and innovation. Caplin and Leahy (1998) investigate informational
spillovers between firms regarding market demand. Sah (1991) and Lochner (2007) consider rational-cheater models of criminal
behavior where agent’s form beliefs about the enforcement regime based on their own experience (Lochner, 2007) or both their
own experience and that of others (Sah, 1991). In addition, Aghion et al. (1991), Bolten and Harris (1999), and Keller et al.
(2005) all investigate strategic experimentation in various bandit scenarios.
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actual and forecast price of the IPO shares (Benveniste et al., 2003); entering new (e.g.,

geographic) markets such as new retail space (Caplin and Leahy, 1998); mineral exploration

in a new region (Hendricks and Porter, 1996); and the introduction of new products such

as the Apple ipodr. While there are insights to be gained from traditional empirical ap-

proaches, the laboratory offers the control and observability necessary to test the theoretical

model. After all, it is important to understand the behavioral reactions to such information

spillovers and identify the nature of the information provision if we are to inform the policy

debate.

To this end, this is the first paper, to the best of our knowledge, to report the results

of an experimental test of the Nash equilibrium predictions in a one-armed bandit problem

with information spillover. We implement a two-player, two-period game in which players’

have commonly known heterogeneous returns to the safe option. In each period, players

simultaneously choose between a risky option and a safe option. Choosing the safe option

in the first period yields a guaranteed return, but no information about the expected payoff

to the risky option that might inform the second period decision. Information is valuable

because the probability that the risky option pays out is unknown and a draw will update

this probability. The free-rider problem arises because if either player chooses the risky

action in the first period, the outcome of that choice is observable by the other player. The

public good is the expected benefit information provides in making the subsequent decision.

However, because the players’ safe returns differ, their incentives for free-riding differ. It

turns out that there is a range of safe returns for which players have a conditional best-

response. This is because for players with safe returns in this range the expected value of

the message service (i.e. the perceived future expected benefits of the information) when

one player chooses the risky option is greater than the expected value of the message service

when two players choose the risky option. When paired with a player whose safe return is

below the lower bound on this range, a player can free-ride, as the other player is should

choose the risky option (i.e. they have a dominate strategy to choose the risky option). On

the other hand, when paired with a player whose safe return is above the upper bound on

this range, no information should be provided by the other player (i.e. they have a dominate

strategy to choose the safe option). Thus, for players with a conditional best-response, their

incentive to free-ride depends on the safe return of the other player. Since the expected value

of information provision is endogenously determined, and the game is dynamic, the problem

we consider is more subtle than the standard public good problem.2 Nonetheless, our results

2There have been numerous experimental tests of Nash equilibrium predictions of both provision and of free-riding in a
public goods setting. Overwhelmingly the evidence suggests the people do not free-ride as often as theory predicts. Experiments
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are consistent with previously reported findings in that players free-ride less than predicted

when free-riding is a best response, and more than predicted when pulling the arm of the

bandit is a best response.

Because the game is played for two periods, we can identify whether players can correctly

deduce the dynamically optimal first period strategies and whether players’ second period

choices are consistent with Bayesian updating/reinforcement learning.3 In order for players

to choose the Nash best-response strategies in the first period of the game, they must satisfy

three increasingly sophisticated cognitive requirements: (i) players must be able to formulate

and update their beliefs using Bayes’ rule;4 (ii) players must be forward-looking, so that they

recognize the value of information; (iii) players must also be strategically rational in order to

recognize when the incentive to free ride is a dominant strategy and when it is not. In order

for a player to be strategically rational, it must be that information has value and in order for

information to be of value, it must be that the player updates her beliefs. If a player fails to

satisfy any of these requirements, her behavior will deviate from the theoretical prediction.5

Choices made by players in the second period of the game allow us to identify whether or

not players utilize information in manner consistent with the model. Consistent behavior in

the second period of the game lends support to the notion that players understood the value

of information in the first period of the game. While there is considerable published evidence

that players are not “perfect Bayesians”—people place too little weight on prior beliefs and

too much weight on new information—our experiment is designed to afford players the best

shot at being “good Bayesians.” For example, when there are a small number of possible

data generating processes, players are able to form their posterior beliefs on heuristics such

as whether the sample is “representative” of one of the possibilities (e.g. El-Gamal and

Grether (1995); Grether (1980, 1992); Kahneman and Tversky (1972, 1973); Tversky and

Kahneman (1971, 1973)). Because we implicitly allow for a very large number of possible

data generating processes, we minimize the influence of prior beliefs so that a heuristic such

as representativeness has little explanatory power. Furthermore, we employ a very simple

routinely report that subjects contribute to the public good despite this being a dominated strategy. Explanations for such
behavior have typically taken the form of either warm-glow (i.e. the satisfaction from giving) or altruism (i.e. interdependent
utility functions).

3Charness and Levin (2005) tested Bayesian predictions against those of reinforcement learning. Their results suggest that
both heuristics are used, and when the predictions of the two are aligned, as in our experiment, people respond as expected.

4In the absence of Bayesian updating the behavior in the one-armed bandit setting is degenerate. Classical statistical decision
theory would imply that players always take two draws to maximize the size of the sample. Such myopic behavior is inconsistent
with a decision setting in which information from prior draws has value.

5There is mixed evidence that people understand the value of information as modeled in the economic literature. Kraemer et
al. (2006) investigate the extent to which people rationally acquire costly information (i.e. understand the value of information).
There results suggest that people overvalue information (i.e. they purchase too much information). However, earlier experiments
provide a body of evidence that suggests the people undervalue information (McKelvey and Page, 1990; Meyer and Shi, 1995;
Banks et al., 1997; Anderson, 2001; Gans et al., 2007).
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case of Bayesian updating, a binomial sample, in which the sample proportion asymptotically

approaches the no information prior Bayesian estimate. Despite these simplifications to the

decision setting, we find evidence that when players make a choice in the first period of

play, they are more likely to repeat that choice in the second period. Thus, like Charness

and Levin (2005), we find that players who make errors in the second period do so when

information is in dissonance with their beliefs.6 While our first period error rates indicate

that players undervalue information, they respond to information in a manner consistent with

Bayesian updating/reinforcement learning, suggesting they place some value on information.

Deviations from Bayesian predictions appear to be attributable, in part, to salience and

cognitive dissonance. Players for whom the cost of errors is high are less likely to commit

errors. Indeed, when only one player pulls the arm, it is the player predicted to do so at

least 96% of the time. Therefore, our results suggest that players are somewhat myopic, yet

are forward-looking “enough” to behave strategically.

As we have noted, when each player can observe the other’s actions and results, informa-

tion is a classic public good and the gambler may have an incentive to free-ride on the play

of another.7 It could be argued that there are other effects at work. For example, in games

with three or more periods and publicly observable outcomes, Bolten and Harris (1999) show

that players face two opposing incentives: an incentive to free-ride on information provision

by others and an incentive to provide information in the current period to encourage infor-

mation provision by others in the future. Like Bolten and Harris (1999), we assume that

both the choice of and the result of a draw is perfectly observable. However, by restricting

our attention to a two-period setting, we eliminate the encouragement effect; information

gathered in the second period of the one-shot game cannot affect future play. This allows us

to focus our attention solely on the free-riding effect. Thus, unlike Gans et al. (2007), who

focus on how players form heuristics to simplify the repeated sampling problem in infinite

time bandit problems, the complexity of the problem our players face is lessened.

6While previous results suggest people place too little weight on priors, our observation of cognitive dissonance suggests the
contrary. We believe there is plausible explanation for the apparent discrepancy. Previous experiments testing Bayes rule versus
other heuristics explicitly induced prior beliefs, provided new information, and then ask the subject to make a guess about the
source of the information. However, players do not have to use information in our experiment (they can simply choose the safe
option in the second period of the game). Indeed, some players never choose the risky option in the second period of certain
treatments (see footnote 15). This could explain why players seem to ignore information in our experiment.

7The informational externality considered here differs from the literature concerning “herding” and “information cascades.”
These latter models assume players have private information regarding the true state of nature and observation of other players’
actions causes inference about that private information. As in Bolten and Harris (1999), our model allows players to form
beliefs about the true state of nature through observation of other players’ outcomes.
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2 Information Spillovers in a Bandit Game

Two risk neutral player’s, i = 1, 2, play for two periods, t = 0, 1. In each period the

players simultaneously choose whether or not to take the safe option, paying Si, or to take

the risky option, a sample of n Bernoulli trials, where each trial pays R for a success and

zero for a failure. The results of the period one draws, if any, become public information

prior to period two. The payoffs to each player are the undiscounted sum of first and second

period returns.

2.1 Equilibrium in the Two-Person, two-period One-Armed Bandit Game

The probability of a success in each draw from the risky option is θ, where 0 < θ < 1,

but θ is unknown to the players. Since the probability of success is unknown, players must

make their decisions in each period based upon their subjective beliefs. Let ξ(θ) denote the

distribution of each player’s prior beliefs about θ. Assume that ξ(θ) is a beta distribution

with parameters α and β, so that ξ(θ) ∝ θα−1(1− θ)β−1 (DeGroot, 1970, p. 40). A draw of

N samples from the risky option results in a sample of outcomes, x1, . . . , xN , each of which is

distributed as a Bernoulli random variable, so that the likelihood we observe X successes in

N trials is given by fN(x1, . . . , xN |θ) ∝ θX(1− θ)N−X , where X =
∑N

i=1 xi is the number of

observed successes in N trials. As each player may draw n samples, N ∈ {0, n, 2n} denotes

the number of draws in the first period. Zero draws occur when neither player selects the

risky choice; n draws occur when one of the players selects the risky choice and the other

the safe choice; and 2n draws occur when both players select the risky choice. The posterior

distribution of beliefs is given by ξ(θ|x1, . . . , xN) ∝ θα+X−1(1− θ)β+N−X−1, which is a beta

distribution with parameters α + X and β + N − X (DeGroot, 1970, p. 160, Theorem 1).

Thus, the information available to players at the beginning of period two is the number of

draws, N , and the number of successes, X. Let I = {N, X} denote the information set. The

possible information sets after one period are I0 = {∅}, I1(X) = {n, X}, I2(X) = {2n, X},
where the subscript on the information set represents the number of players who have chosen

the risky option. Let pt = E[θ|I] denote each player’s common expectation of θ in period

t, given the information, I, available at that time. A beta distribution with parameters α

and β has expectation (α + X)/(α + β + N). Thus p0 = α
α+β

and p1(I) = α+X
α+β+N

. Since

players are completely uninformed about the value of θ, it is natural to assume that each

player has uninformative prior beliefs about the probability of success. Therefore, we assume

that α = β = 1, which implies that ξ(θ) is a uniform distribution over the interval zero to
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one. Hence, the expectation of the uninformed prior is p0 = 1
2

and the expectation of the

posterior distribution is p1 = 1+X
2+N

.

Given players are assumed to be risk neutral, the current period subjective expected

utility (EUit) to each player i from choosing the risky option is simply the expected value

from the risky option, which is given by

EUit = R

n∑
X=0

fn(X|I)X = nRpt(I). (1)

In the Nash equilibrium, each player solves the dynamic game using backward induction.

Player i’s decision rule in the second period is to choose the risky option if, and only if:

nRp1(I) > Si. (2)

Thus, a risk-neutral player chooses the risky option if, and only if, the return to the safe op-

tion, Si, is less than the expected return to the risky option, nRp1(I), given the expectation

about θ given by the posterior distribution as informed by the information set I. Therefore,

we can write the second period expected payoffs as max
[
Si, Rnp1(I)

]
. For a Bayesian ex-

pected utility player, there is a critical number of successful draws, XSi
N , that depends upon

the opportunity cost to the player and the number of draws observed, such that if X > XSi
N

the player is induced to choose the risky option. From the posterior expectations, those

values satisfy XSi
N = Si(2+N)

nR
− 1 for N ∈ {n, 2n}.

The game in period one is complicated by both strategic and information concerns. The

normal form of the first period game is depicted in Figure 1. Player j’s expected payoffs are

depicted in the upper-right of each cell and player i’s expected payoffs are depicted in the

lower left of each cell. When neither player chooses the risky option, the second period payoffs

are simply max[Si, Rnp0] , since no draws from the risky option have been observed. When

one or both of the players chooses the risky option, however, the terms in summation give

the decision rule for each possible information set weighted by the probability of observing

that information set given the prior beliefs.

From Figure 1, we may derive the decision rule for player i to choose the risky option

when player j has chosen the safe option. That rule is to choose the risky option if, and only

if the following inequality holds:

Rnp0 − Si +
n∑

X=0

fn(X|I0)max
[
Si, Rnp1

(
I1(X)

)]
−max

[
Si, Rnp1(I0)

]
> 0. (3)
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Player j
Safe Risky

Player i

Safe
Sj + max

[
Sj , Rnp1(I0)

]
Rnp0 +

∑n
X=0 fn(X|I0)max

[
Sj , Rnp1

(
I1(X)

)]
Si + max

[
Si, Rnp1(I0)

]
Si +

∑n
X=0 fn(X|I0)max

[
Si, Rnp1

(
I1(X)

)]

Risky
Sj +

∑n
X=0 fn(X|I0)max

[
Sj , Rnp1

(
I1(X)

)]
Rnp0 +

∑2n
X=0 f2n(X|I0)max

[
Sj , Rnp1

(
I2(X)

)]
Rnp0 +

∑n
X=0 fn(X|I0)max

[
Si, Rnp1

(
I1(X)

)]
Rnp0 +

∑2n
X=0 f2n(X|I0)max

[
Si, Rnp1

(
I2(X)

)]

Figure 1: Normal Form of the First Period Game

The difference in the first two terms in (3) is the expected opportunity cost of obtaining

information in the first period. This equals the expected return from choosing the risky

option less the forgone return to choosing the safe option. The difference in the last two

terms in (3) is the expected value of the message service (Hirshleifer and Riley, 1992, p. 180).

It is well known that for any given return to the safe option relative to the risky option, the

expected value of the message service is non-negative. This can be shown by writing the

expected value of the message service as

EV MSSi
(n) =

n∑
X=0

fn(X|I0)
{

max
[
Si, Rnp1(I1(X))

]
−max

[
Si, Rnp1(I0)

]}
≥ 0. (4)

Information has value because it may change the decision in the second period. The

expected value is the difference between the weighted average of expected returns from

the optimal decision, max
[
Si, Rnp1

(
I1(X)

)]
, weighted by the expected probability of the

particular information signal, fn(X|I0), and the expected return from the optimal decision in

the absence of information, max
[
Si, Rnp1(I0)

]
. This difference is greater than zero whenever

the player chooses an action that differs from what he would have chosen absent information.

Since the opportunity cost of obtaining information is positive for all values of Si > Rnp1(I0),

and negative for Si < Rnp1(I0), it is a best-response for a player with a safe return Si ≤ Rnp0

to choose the risky option whenever the other player chooses the safe option.

In contrast, if player j has chosen the risky choice in period one, player i’s decision is no

longer a comparison between zero information and a positive amount of information. Rather,

player i’s choice is now between two message services, one in which a n draws are provided

and one in which 2n draws are provided. When player j has chosen the risky option, player
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i’s decision rule is to choose the risky option if, and only if,

Rnp0−Si +
2n∑

X=0

f2n(X|I0)max
[
Si, Rnp1

(
I2(X)

)]
−

n∑
X=0

fn(X|I0)max
[
Si, Rnp1

(
I1(X)

)]
> 0.

(5)

The difference in the first two terms in (5) is the expected opportunity cost of obtaining the

message service that provides 2n draws in the first period rather than the message service

that provides only n draws, measured in the safe return foregone. This cost is identical to

the case where the other player does not make the risky choice. The expected value of the

message service that provides 2n draws relative to the message service that provides n draws

is captured by the difference between the two summations in (5). This equals the weighted

average of expected returns the player expects to receive from the second period optimal

decision, given that both players have chosen the risky option, less the weighted average of

expected returns the player expects to receive from the second period optimal decision, when

only the other player has chosen the risky option. We now show that the net expected value

of the message service that provides 2n draws relative to the message service that provides

n draws is negative for some players.

2.2 Nash Equilibrium Illustrated when n = 1

To gain some intuition about how players are predicted to play, consider the case where

n = 1. Suppose that player j has chosen the safe option. If player i chooses the safe option,

his expected return is

EUi(Safe|Safe) = Si + max
[
Si,

1
2
R

]
, (6)

and if player i chooses the risky option, his expected return is

EUi(Risky|Safe) = 1
2
R + 1

2
max

[
Si,

1
3
R

]
+ 1

2
max

[
Si,

2
3
R

]
, (7)

where the fractions outside the max functions are the probability of the information set

given the uninformed prior, and the fractions inside the max functions are the posterior

expectations of a success. Equating the right-hand sides of (6) and (7) and solving for the

safe return value, S̄, such that for Si < S̄, the expected return from choosing the risky option

exceeds the expected return from the safe option, yields S̄ = 5
9
R. For all players for whom

Si < 5
9
R, the best-response to the other player choosing the safe option is to choose the risky

option, and for all players for whom Si ≥ 5
9
R, the best response to player j choosing the safe

8
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option is to choose the safe option.

Suppose instead that player j has chosen the risky option. Then the expected return to

player i of choosing the safe option is

EUi(Safe|Risky) = Si + 1
2
max

[
Si,

1
3
R

]
+ 1

2
max

[
Si,

2
3
R

]
. (8)

In contrast, if player i chooses the risky option, his expected return is

EUi(Risky|Risky) = 1
2
R + 1

4
max

[
Si,

1
4
R

]
+ 1

2
max

[
Si,

1
2
R

]
+ 1

4
max

[
Si,

3
4
R

]
. (9)

Solving for the value of the safe return, S, such that for Si ≤ S the expected return from

choosing the risky option exceeds the expected return from choosing the safe option, yields

S = 29
60

R. Thus, all players for whom S < 29
60

R, the best-response to the other player choosing

the risky option is to also choose the risky option. This also means that all players for whom

Si ≥ 29
60

R, the best response to player j choosing the risky option is to choose the safe option.

Therefore, players whose safe return is less than S have a dominant strategy of choosing

the risky option and players whose safe return is greater than S̄ have a dominant strategy

of choosing the safe option. Players for whom S < Si < S̄, however, have a conditional

best-response; to choose risky if the other player chooses safe and to choose safe if the other

player chooses risky. This is demonstrated by plotting the expected second period return

as a function of the value of Si relative to R as shown in Figure 2 (where the vertical scale

has been truncated). The thick solid chord with a single kink at Si = 1
2
R is the expected

return of the second period optimal decision when neither player has chosen the risky option

in the first period (N = 0). The dashed chord with kinks at Si = 1
3
R and Si = 2

3
R is the

expected return of the second period optimal decision when one player has chosen the risky

option in the first period (N = 1). The thin solid chord with kinks at Si = 1
4
R, Si = 1

2
R,

and Si = 3
4
R is the expected return of the second period optimal decision when both players

have chosen the risky option in the first period (N = 2). The vertical distance between the

thin solid chord and the thick solid chord is the expected value of the message service when

one player has chosen the risky option in the first period. The vertical distance between

the dashed chord and the thick solid chord is the expected value of the message service

when both players have chosen the risky option in the first period. Between S and S̄, the

expected value of the message service associated with two draws is less than the expected

value of the message service associated with one draw. This difference is maximized at

Si = 1
2
R. The two horizontal dotted chords show the expected value of the message services

9
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Figure 2: Expected Value of Message Services with n Draws and 2n Draws, n = 1.

for the player for whom Si = 1
2
R, for the cases of one draw and two draws, respectively.

For the player for whom Si = 1
2
R, the expected value of the message service associated

with one draw is equal to EV MSR
2

(1) = 1
12

; the expected value of the message service

associated with two draws is equal to EV MSR
2

(2) = 1
16

. The difference for this player is

EV MSR
2

(2)− EV MSR
2

(1) = 1
16
− 1

12
= − 1

48
.

With one draw, relative to his uninformative prior of p0 = 1
2
, the player’s posterior

expectation moves to either p1 = 1
3

with probability 1
2

or to p1 = 2
3

with probability 1
2
.

With two draws, given his uninformative prior, the player obtains a posterior expectation of

p1 = 1
4

with probability 1
4
, a posterior expectation of p1 = 3

4
with probability 1

4
, or a posterior

expectation of p1 = 1
2

with probability 1
2
. Therefore, with two draws, it is equally likely that

the information from the two draws will cancel each other out, in which case the player is

left with no more information than from his prior, of that the two draws will reinforce each

other, in which case the player is more informed than with his prior. In contrast, with one

draw, the player’s posterior expectation always differs from his prior expectation. A risk

neutral Bayesian player only cares about the expected value of the lottery relative to the

safe return. Thus, for a player for whom S < Si < S̄, taking two draws is expected to be

less valuable in making his subsequent second period decision than is taking only one draw.

10
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2.3 Solution to the Game Used in the Experiment

In the experiment the payoff to a successful draw is R = $5, and choosing the risky option

gives the player n = 3 draws. There are three types of players, indexed by their safe returns:

SL = $4, SM = $8, and SH = $12. Thus we can obtain exact values for the expectations,

assuming a no information prior, depending upon the value of Si each player faces. In the

experiment, SL = $4 and SH = $12 players are always paired with SM = $8 player. Figure 3

displays the normal form of the first period games used in the experiment. The numbers in

Figure 3 represent the expected (undiscounted) present value stream of payoffs from playing

a particular strategy, given optimal second period behavior and an uninformative prior. The

SM = $8 player’s payoffs are the first number in each cell and best-responses are in bold-face

font. There is one pure-strategy Nash equilibrium in each of the two games in Figure 3. In

the Nash equilibrium for the {$4, $8} game, the SM = $8 player chooses the safe option and

the SL = $4 player chooses the risky option. In the Nash equilibrium for the {$12, $8} game,

however, the SM = $8 player chooses the risky option and the SH = $12 player chooses the

safe option.

Observe also that for players of types SH = $12 and SL = $4 the cost of decision error

is much higher relative to the cost of decision error for the SM = $8 player type (Smith and

Walker, 1993). For any player for whom S < Si < S̄, the cost of decision error is relatively

low, since the expected value of the choosing the risky option is very close to the return from

the safe option. Unfortunately, this is also the type of player who is the most interesting

because he does not have a dominant strategy. This feature of the problem is dictated by

the underlying the one-armed bandit game.8

3 Experimental Design and Hypotheses

The experiment implements the two period game described above. Each player partic-

ipates in twenty rounds of play in a within-subjects design. In each period of each round,

players choose between a guaranteed amount, predetermined to be one of Si = {$4, $8, $12},
and a lottery with an unknown probability distribution. The lottery is framed as three draws

with replacement from an urn containing 100 balls, composed of an unknown proportion θ of

red balls and proportion 1−θ of blue balls, where 0 ≤ θ ≤ 1. Each red ball pays $5 and each

blue ball pays $0. Players are informed that θ is held constant in both periods of a round

8The small difference in the payoff space implies that we are more likely to err in the direction of rejecting Nash equilibrium
predictions.
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Si = $4 Si = $12
Safe Risky Safe Risky

Si = $8

Safe 128
8

92
8

4320
256

121
8 Safe 128

8
48
2

4320
256

39
2

Risky 131
8

5952
512

4149
256

7709
512 Risky 131

8
12288
512

4149
256

9993
512

(a) {$4, $8} Game (b) {$12, $8} Game

Figure 3: First Period Game Expected Utilities

of the experiment; but varies across rounds. Thus, information obtained in the first period

could inform the decision the player is to make in the second period; however, information

has no value from one round of the experiment to the next.

Players are randomly assigned to one of the safe payoff values in each round of a session.

The model predicts that the Si = $8 player type will systematically vary his behavior

depending upon which type of player he is paired with, Si = $4 or Si = $12 player types.

Thus, an Si = $8 player type is always paired with either an Si = $4 player type or an

Si = $12 player type. Therefore, in any round of play 25% of players are type Si = $4,

50% are type Si = $8, and 25% are type Si = $12. This experimental design yields four

treatments consisting of the combinations of a player’s own type and the type of the other

player {Si, Sj} = {{$4, $8}, {$8, $4}, {$8, $12}, {$12, $8}}. Each treatment pair is assigned

a probability of success from a distribution with mean 0.5 in accordance with the non-

informative prior. The player types, player pairing, and underlying probability of success

are drawn randomly in each round of play, and remain fixed for that round.9 Treatments are

drawn with replacement. Player pairing and the underlying probability of success in each

round are drawn without replacement. Players never learn the identity of their partner in

any round, but in each round they know their own and their partner’s type.

In all sessions the instructions are read aloud, as well as presented on computer screens,

to ensure common knowledge.10 Participants are required to pass a basic test of statistical

skills to reduce errors due to misunderstanding.11 A total of 52 players have participated (18

in session 1, 20 in session 2, and 14 in session 3). Since each player makes choices in each of

9The motivation for randomizing the player types is to facilitate the backward induction process. That is, actually playing
as another type should enable a player to deduce the optimal strategy for that type.

10Screen images are available upon request from the authors.
11Participants could not proceed until they answered all questions correctly. The questions are provided in the screen images.
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two periods of twenty rounds of play, there are 2080 total observed risky/safe choices. The

experiments were conducted at the University of XXXX Laboratory. The participant pool

is composed of volunteer students at the university. Participants are recruited by email via

the lab’s Online Recruitment System for Experimental Economics (ORSEE) (Greiner, 2004).

The experiment is programmed and conducted with the software Z-Tree (Fischbacher, 2007).

Players are paid on the basis of the outcome of one randomly chosen round. Experimental

sessions last approximately 90 minutes, and participant earnings average $23, of which $5

was a show-up fee.

3.1 Hypotheses Regarding First Period Choices

We present the equilibrium predictions for the first period choices implied by the Bayesian

behavior, and derive hypotheses about the deviations from those predictions. Let ∆EU1
ijt

denote the latent undiscounted net gain in the sum of first and second period subjective

expected utility to a player of type i playing against a player of type j from choosing the

risky option in round t. Then the probability that the player chooses the risky option in the

first period is given by

Pr(∆EU1
ijt > 0) = β1

ijDij + β1
t Rt + β1

PPi + ε1
ijt, (10)

where Dij is a vector of treatment dummy variables where i denotes a player’s own payoff

from the safe choice and j denotes the partner’s payoff from the safe choice, Rt is a vector

of round fixed-effects, Pi is a vector of player fixed-effects, and ε1
ijt is the unobserved error.12

The β1
ij parameters correspond to the (conditional) mean probabilities that each type

chooses the risky option in the first period. Under the null hypothesis that the round and

player effects are zero, these correspond to the unconditional mean probabilities that each

type chooses the risky option in period one. The Nash equilibrium to the game yields a set

of behavioral predictions that strictly follow the theory. These are that first period behavior

satisfies β1
4,8 = β1

8,12 = 1 and β1
8,4 = β1

8,12 = 0. If players err, their errors are necessarily one

sided: those players who should play the risky (safe) choice with probability one can only

err by choosing the risky (safe) choice with probability less than one. The following set of

behavioral hypotheses takes player error into account:

Hypothesis 1. β1
4,8 > β1

12,8 : players in treatment {$4, $8} should choose the risky option

more often than players in treatment {$12, $8}, in the first period.
12One of the strengths of a within-subjects design is that the player fixed-effects should be uncorrelated with the treatments,

allowing for a cleaner test of treatment effects.
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Hypothesis 2. β1
8,12 > β1

8,4 : players in treatment {$8, $12} should choose the risky option

more often than players in treatment {$8, $4}, in the first period.

To achieve the Nash predictions, players must satisfy three requirements: (i) they must

be Bayesian, (ii) they must recognize the value of information, and (iii) they must behave

strategically. Let ε1
ij denote the average error by treatment type. Player error can be caused

by several factors. Thus, deviations from theoretical predictions in the first period could be

due to myopic behavior (undervaluation of information) or a failure to be strategically ratio-

nal. The two types of violations, however, do not produce symmetric errors, as hypotheses

3 and 4 relate:

Hypothesis 3. ε1
8,12 ≡ 1 − β1

8,12 > β1
8,4 − 0 ≡ ε1

8,4 : in the first period, myopic players in

treatment {$8, $12} should exhibit a higher error rate by choosing the safe option more often

than players in treatment {$8, $4} choose the risky option.

Hypothesis 4. ε1
8,12 ≡ 1− β1

8,12 < β1
8,4 − 0 ≡ ε1

8,4 : in the first period, strategically irrational

players in treatment {$8, $12} should exhibit a lower error rate by choosing the safe option

less often than players in treatment {$8, $4} choose the risky option.

If players are myopic, they will choose the guaranteed amount in both periods of the

{$12, $8}, {$8, $12}, and {$8, $4} treatments. Thus, we expect myopia to produce a higher

error rate in the first period of the {$8, $12} treatment relative to the {$8, $4} treatment.13

On the other hand, if players understand the expected value of information but fail to

recognize when the other player will provide it, they should choose the risky option in the first

period of the {$8, $12} and {$8, $4} treatments. These players recognize the expected value

of information but fail to be strategically rational. Thus, we expect strategic irrationality

to produce a higher error rate in the {$8, $4} treatment than in the {$8, $12} treatment.14

However, it is clear that Hypotheses 3 and 4 are mutually exclusive: Hypothesis 3 implies

1 < β1
8,12 + β1

8,4 while Hypothesis 4 implies that 1 > β1
8,12 + β1

8,4.

Another potential cause of player error is lack of payoff salience (Smith and Walker,

1993). This is an issue for any experimental design — a failure to implement a basic precept

of experimental methodology (Smith, 1982). By virtue of our design, players in treatments

{$4, $8} and {$12, $8} each have much more to gain than a player of type {$8, $4} and

13Myopia causes a bias towards the safe option, which simultaneously raises the error rate in the {$8, $12} treatment and
lowers the error rate in the {$8, $4} treatment.

14Strategic irrationality causes a bias toward choosing the risky option, which simultaneously raises the error rate in the
{$8, $4} treatment and lowers the error rate in the {$8, $12} treatment.
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{$8, $12} from making the correct choice, hence their decision errors should be smaller.15

The mean decision error for players in treatment {$4, $8} is ε1
4,8 = 1 − β1

4,8 and the mean

decision error for players in treatment {$8, $12} is ε1
8,12 = 1 − β1

8,12. Thus, salience implies

that 1−β1
4,8 < 1−β1

8,12, or that β1
8,12 < β1

4,8. Similarly, while players in treatments {$12, $8}
and {$8, $4} are each expected to choose the safe option, the salience is higher for a player

in treatment {$12, $8}, thus we expect that ε1
12,8 = β1

12,8 − 0 < β1
8,4 − 0 = ε1

8,4. The design

allows us to investigate the contribution of salience to decision errors. Specifically:

Hypothesis 5. ε1
4,8 ≡ 1− β1

4,8 < 1− β1
8,12 ≡ ε1

8,12; salience implies that in period one players

in treatment {$4, $8} should have lower errors rates than players in treatment {$8, $12}.

Hypothesis 6. ε1
12,8 ≡ β1

12,8 < β1
8,4 ≡ ε1

8,4; salience implies that in period one players in

treatment {$12, $8} should have lower errors rates than players in treatment {$8, $4}.

3.2 Hypotheses Regarding Second Period Choices

The Bayesian predictions are that players choose the risky option in the second period

when the inequality in (4) is satisfied, i.e., that a player of type Si chooses the risky option

whenever X ≥ XSi
N . When N = 3, X$4

3 = 1, X$8
3 = 2, and X$12

3 = 3; and when N = 6,

X$4
6 = 2, X$8

6 = 4, and X$12
6 = 6. This implies that the second period choice does not

depend upon the first period choice, except in so far as that choice determines the number

of draws. It also implies that what matters is whether or not X is greater or less than XSi
N ;

it does not matter by how much the two numbers differ.

While Bayesian updating implies that all that is important is the sign of X−XSi
N , salience

implies that the larger is the difference between X and XSi
N , the larger will be the difference in

expected utility. This is measured by including a variable equal to the difference X −XSi
N in

a regression equation explaining second period choices. Salience implies that the coefficient

on this variable will be positive in sign.

The first period choice made by a player could matter if the player suffers cognitive

dissonance (Akerlof and Dickens, 1982). Cognitive dissonance is a psychological condition

induced when an individual is confronted with information that contradicts their prior belief.

This results in placing too much weight on prior beliefs in the updating process. In our

experiment, cognitive dissonance implies that players will be more likely to repeat their first

15The percentage difference in payoffs between choosing the best response and the alternate strategy in Figure 3 is at most
4% for a player in treatments {$8, $4} and {$8, $12}, while the percentage difference between choosing the best response and
the alternate strategy is at least 23% for a player in treatment {$12, $8} and at least 29% for a player in treatment {$4, $8}.
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period choices regardless of the outcome of that choice.16 Thus, the player is more likely

to choose the risky option in period two if she chose the risky option in period one and to

choose the safe option in period two if she chose the safe option in period one. In a regression

model in which second period choices are coded as a one if the risky option is chosen and

a zero otherwise, the effect of cognitive dissonance can be analyzed by including a dummy

variable that is equal to one when the first period choice was the risky option. Cognitive

dissonance implies that this coefficient will be positive in sign.

Let ∆EU2
ijt denote the latent net gain in expected utility of a player of type i playing

against a player of type j in period two of round t. Then the preceding discussion implies

that we may write a regression model of the probability that a player chooses the risky option

in period two as

Pr(∆EU2
ijt > 0) = β2

ijADXDij + β2
ijB(X−XSi

N)Dij + β2
CDD1 + β2

t Rt + β2
PPi + ε2

ijt, (11)

where DX is a dummy variable equal to one if X > XSi
N and equal to zero otherwise; Dij is

a dummy variable equal to one if the treatment is type {$i, $j}; X−XSi
N is a vector of the

differences between the number of observed successes and the critical number of successes

to induce the risky choice, which is set equal to zero when neither player chooses the risky

choice in period one; D1 is a dummy variable equal to one if player i chose the risky choice

in the first period; and as in period one, Rt is a vector of round fixed-effects and Pi is a

vector of player fixed-effects. The β2
k are parameters to be estimated.

The Bayesian predictions imply that β2
ijA = 1, and that β2

ijB = β2
CD = βt = βP = 0. Since

player error can only lower the proportion of players who satisfy these strict hypotheses, we

state the Bayesian hypotheses as follows:

Hypothesis 7. β2
ijA ≥ 0 : Players apply Bayes’ rule when making second period decisions.

The alternative hypothesis is that players are less likely to choose the risky option in the

second period when they have observed the critical proportion of successes.

The salience hypothesis is:

Hypothesis 8. β2
ijB ≥ 0 : Salience increases the probability that a player chooses the risky

option. The alternative hypothesis is that β2
4,8B < 0, β2

8,4B < 0, β2
8,12B < 0 and β2

12,8B < 0, or

that salience has no effect upon second period choices.

16We do not explicitly induce priors in the experiment, in order to maximize the value of information in the first period of
the game. However, the result is an inability to distinguish cognitive dissonance from strong prior beliefs. That is, players may
indeed update their beliefs in accordance with the Bayesian process, yet begin with such strong priors that they appear to be
ignoring the information provided in the first period of the game.
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The cognitive dissonance hypothesis is:

Hypothesis 9. β2
CD ≥ 0 : Choosing the risky option in period one increases the likelihood of

choosing the risky option in period two. The alternative hypothesis is that β2
CD < 0, cognitive

dissonance has no effect upon second period choices.

Finally, players in the {$8, $4} treatment should be indistinguishable from players in the

{$8, $12} treatment once the second period arrives, since their incentives are identical at

that period. This implies the following hypothesis:

Hypothesis 10. β8,4A = β8,12A and β8,4B = β8,12B : Whether a player is in the {$8, $4} or

{$8, $12} treatment does not matter in the second period. The alternative hypothesis is that

one or more of the equalities does not hold.

4 Analysis of Results

4.1 Analysis of First Period Choices

We begin by examining aggregate measures of first period choices by treatment. Figure

4 depicts the proportion of players choosing the lottery and Table 1 presents the error rates

conditioned only by treatment.

Table 1: First Period Error Rates by Treatment

Treatment {$4, $8} {$8, $4} {$8, $12} {$12, $8}
Error 1− β4,8 β8,4 − 0 1− β8,12 β12,8

Percentage Errors 5.3% 22.14% 53.33% 2.08%

In Figure 4, the histogram at left depicts the entire sample of first period choices (1040

observations) and the histogram at right depicts the distribution when only one player in

a pair chooses the lottery (644 observations). The panel at left in Figure 4 demonstrates

that players respond to incentives: 95% of players in the {$4, $8} treatment choose the risky

option, while only 2% of those in the {$12, $8} treatment choose the risky option. This

pattern of behavior is consistent with Hypothesis 1. Furthermore, when we restrict our

attention to cases where only one player in a pair chooses the risky option (i.e. the right

panel in Figure 4), we see that the largest error rate is less than 4%. Thus, almost all

deviations from theoretical predictions in period one are due to choices made by those in

the {$8, $4} and {$8, $12} treatments. 22% of decisions in the {$8, $4} treatment choose the

17



Information Spillovers In a One-Armed Bandit Game Boyce, Bruner, and McKee

0
.2

.4
.6

.8
1

P
er

ce
nt

 C
ho

os
in

g 
th

e 
Lo

tte
ry

{$4, $8} {$8, $4} {$8, $12} {$12, $8}
Treatment

All Data

0
.2

.4
.6

.8
1

 

{$4, $8} {$8, $4} {$8, $12} {$12, $8}
Treatment

One Subject Chose the Lottery

 

 Figure 4: Frequency Distribution of First Period Risky Choices by Treatment.

risky option, even though the risky option is predicted to never be chosen in this treatment,

and 47% of decisions in the {$8, $12} treatment choose the risky option, even though the

risky option is predicted to always be chosen in this treatment. While these frequencies differ

from Nash equilibrium predictions, they differ from each other in the direction consistent

with Hypothesis 2.

Choosing the lottery 47% of the time in the {$8, $12} setting may appear to be the

result of random choices. However, random choice would also generate a frequency of 50%

of players choosing the risky option in the {$8, $4} treatment. The lower error rate in the

{$8, $4} treatment than in the {$8, $12} treatment is inconsistent with Hypothesis 4, that

players’ behavior is strategically irrational. However, this is consistent with Hypothesis

3, that players are behaving myopically. Myopia, which lowers the value of information,

biases behavior toward the safe choice and lowers the return from the risky choice. But

if players were behaving entirely myopically we would not expect a difference between the

{$8, $4} treatment and the {$8, $12} treatment; both would produce a frequency of 0%

risky choices. Thus, it appears that players undervalue information, yet value it “enough”

to behave strategically.

While aggregate behavior appears to be consistent with Nash equilibrium predictions,

it is important to determine whether the aggregate behavior is the result of many players

deviating some of the time or a few deviating much of the time. We construct the error

rate, defined to be the fraction of suboptimal choices, for each player in each treatment.

The frequency distribution of player first period error rates across treatments are depicted

in Figure 5. In 3 of 4 treatments the modal error rate is 0%. However, in the {$8, $12}
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Figure 5: Frequency Distribution of First Period player Error Rate by Treatment.

treatment the modal error rate is 100%. Thus, in most treatments some players make some

suboptimal choices, however, in the {$8, $12} treatment there is a dramatically higher rate

of players deviating frequently (e.g. 53% of decisions). Again, this pattern of error rates is

consistent with undervaluation of information and lack of salience.

Since players repeat the game over twenty decision rounds, it is worthwhile to investigate

the extent to which there are time trends (e.g. learning). Figure 6 shows the mean proportion

of risky choices in each round by treatment. The mean proportions of players choosing

the risky option in the {$4, $8} treatment and the {$12, $8} treatment are quite stable

across rounds and are close to the theoretical predictions of one and zero, respectively.

Treatments {$8, $4} and {$8, $12}, however, reflect much more volatility and are quite far

from the theoretical predictions of zero and one, respectively. Nevertheless, there are only

two instances where the treatment time trends cross, and the vertical alignment is consistent

with Hypotheses 1 and 2.

Analyzing the period one decisions, controlling for player-specific effects and round ef-

fects, yields useful insights. Table 2 reports the regression results for linear probability

models estimated via ordinary least squares. Model (1) includes only the treatment dummy

variables. Model (2) adds player and round fixed-effects. The results from the panel models
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 Figure 6: Mean Proportion of period one Risky Choices Across Periods by Treatment.

are consistent with the results from the pooled regression.

Table 3 reports tests of the hypotheses stated in the previous section using the regression

models reported in Table 2. In general, the strict versions of the hypotheses are rejected in

all cases. Players make errors and, by virtue of the experimental design, these errors are,

one-sided. Our focus is on the weaker versions of the hypotheses that admit behavioral er-

rors. We summarize the results of the hypothesis tests regarding period one decisions below.

Result 1. Both models reject the hypothesis that players choose the risky option as often in

the {$4, $8} treatment as in the {$12, $8} treatment, in the first period.

Result 2. Both models reject the hypothesis that players choose the risky option as often in

the {$8, $12} treatment as in treatment {$8, $4}, in the first period.

Result 3. Both models reject the hypothesis that errors in the {$8, $4} treatment are larger

than errors in the {$8, $12} treatment in the first period.

Result 4. Neither model rejects the hypothesis that errors in the {$8, $4} treatment are

smaller than errors in the {$8, $12} treatment in the first period.
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Table 2: Linear Probability Model Regression Results for First Period Choices.

(1) (2)
Treatment {$4, $8} Nash 0.946*** 1.257***

(0.019) (0.055)
Treatment {$8, $4} Nash 0.221*** 0.540***

(0.040) (0.055)
Treatment {$8, $12} Nash 0.467*** 0.783***

(0.055) (0.065)
Treatment {$12, $8} Nash 0.021 0.334***

(0.017) (0.057)
Player Effects No Yes
Round Effects No Yes

R2 0.714 0.785

Notes: The dataset consists of a panel of 52 players over 20
decision periods (1040 observations). Errors are clustered by
player. Standard errors are reported in parentheses. Statistical
significance of the estimated coefficients: ”*” significant at the
10% level, ”**”significant at the 5% level, and ”***”significant
at the 1% level.

Table 3: Hypothesis Test Results for First Period Choices.

Hypothesis (1) (2)
1: HO : β4,8 − β12,8 ≤ 0 36.74 34.1

HA : β4,8 − β12,8 > 0 (0.00) (0.00)
2: HO : β8,12 − β8,4 ≤ 0 4.7 4.82

HA : β8,12 − β8,4 > 0 (0.00) (0.00)
3: HO : 1− β8,12 − β8,4 ≤ 0 3.85 2.94

HA : 1− β8,12 − β8,4 > 0 (0.00) (0.00)
4: HO : 1− β8,12 − β8,4 ≥ 0 3.85 2.94

HA : 1− β8,12 − β8,4 < 0 (0.99) (0.99)
5: HO : 1− β4,8 ≥ 1− β8,12 8.96 9.12

HA : 1− β4,8 < 1− β8,12 (0.00) (0.00)
6: HO : β12,8 ≥ β8,4 5.06 4.77

HA : β12,8 < β8,4 (0.00) (0.00)
Player Fixed-Effects N.A. 983.64

(0.00)
Round Fixed-Effects N.A. 1.54

(0.11)
Notes: Columns correspond to the models estimated in Table
2. The numbered hypothesis tests report the t-statistic. The
demographic and round effects are F-statistics. The numbers in
parentheses are the p-values. ”N.A.” means not applicable.
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Result 5. Both models reject the hypothesis that errors in the {$4, $8} treatment are larger

than errors in the {$8, $12} treatment in the first period.

Result 6. Both models reject the hypothesis that errors in the {$12, $8} treatment are larger

than errors in the {$8, $4} treatment in the first period.

The results reported in Figures 4-6, as well as the regression analysis, are consistent with

the error space being one-sided and the relative magnitude of decision cost versus decision

reward. Andreoni (1995) noted that in a binary decision setting (his example was a public

goods contribution game) errors can only be one-sided (i.e., contribute when it is rational

to not). Thus, random decision error in a binary setting, such as ours, will only lower the

sample proportion away from 1, as in treatment {$8, $12}, or raise the sample proportion

above zero, as in treatment {$8, $4}. Smith and Walker (1993) demonstrate the importance

of salience in the presence of random decision error. For a given cost of making a decision,

here captured in the variance of the random error term, the probability of making the optimal

decision is increasing. Hence, since treatments {$8, $4} and {$8, $12} are the least salient

(i.e. they have the lowest opportunity cost of suboptimal behavior), these exhibit the largest

error rates and the most volatile behavior. Still, we find support for Hypothesis 1 and 2,

that players free-ride. Overall, the evidence suggests players respond to the incentives in

the experimental treatments in a manner that is consistent with theory, but behavior is

not nearly as responsive as theory predicts. In particular, players appear to be somewhat

myopic (i.e., they undervalue information), nonetheless, they behave strategically based on

what value they place on information. To further investigate whether players valued first

period information, we analyze the extent to which they respond to the information signals.

That is, do players actually use the first period information in a manner consistent with

theory? Accordingly, we turn our attention to second period decisions.

4.2 Analysis of Second Period Decisions

Table 4 presents the error rates relative to the Bayesian predictions in the second period

choices. When N = 0, players in treatment {$4, $8} should choose the risky option, and

players in treatments {$8, $4}, {$8, $12}, and {$12, $8} should choose the safe option. When

N > 0, players in each treatment should choose the risky option whenever X ≥ XSi
N , and

choose the safe option otherwise. When N = 0, players in the {$4, $8}, {$8, $12}, and

{$12, $8} treatments make few errors. But players in the {$8, $4} make errors relative to

the Bayesian predictions roughly 1
4

of the time. When N > 0, error rates range from 10% to
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Table 4: Second Period Error Rates by Treatment

Treatment {$4, $8} {$8, $4} {$8, $12} {$12, $8}
Error when N = 0 1− β4,8 β8,4 − 0 β8,12 − 0 β12,8 − 0
Percentage Errors 7.69% 23.08% 0.00% 3.23%
Error when X < XSi

N 1− β4,8 1− β8,4 1− β8,12 1− β12,8

Percentage Errors 38.36% 10.61% 24.53% 1.16%
Error when X ≥ XSi

N β4,8 − 0 β8,4 − 0 β8,12 − 0 β12,8 − 0
Percentage Errors 8.25% 33.33% 25.40% 70.00%

33% for players in the {$8, $4} and {$8, $12} treatments, and errors are roughly symmetric

across positive and negative signals. Players in the {$4, $8} and {$12, $8} treatments respond

differently to positive and negative signals. Players in the {$4, $8} treatment make more

errors when the signal is bad and players in the {$12, $8} treatment make more errors when

the signal is good. Given that these players are highly likely to have chosen the correct

choice in the first period this suggests that their error rates are much higher when the signal

does not reinforce their first period choices.17

To explore this more fully, Figure 7 depicts the proportion of players choosing the risky

option according to the proportion of successes observed in the first period, for the cases

where one or more players has chosen the risky option in period one. In the left panel, exactly

one player in a pair chooses the risky option and in the right panel, one or both player(s) in

a pair choose the risky option.18 Figure 7 shows that across each treatment the propensity

to choose the risky option is increasing in the number of observed successes. However, the

model generates sharp predictions regarding responses to information.

Restricting our attention to the left panel, we see the largest increase in the propensity to

choose the lottery in each treatment occurs after observing the critical number of successes.

For example, given an uninformative prior, players in {$4, $8} should choose the safe option

only if they observe no successes out of three draws in the first period, otherwise they

should choose the risky option. The largest increase in the propensity to choose the lottery

in this treatment occurs after observing at least one success, an increase of 40%. The no

uninformative prior prediction for the {$8, $4} and {$8, $12} treatments is to choose the safe

option after observing less than two successes and to choose the risky option otherwise. In

17These error rates are influenced fairly significantly by a relatively small number of players. In the {$4, $8} treatment 21
players always choose the risky option while none always choose the safe option. In the {$8, $4} treatment 2 players always
choose the risky option while 6 always choose the safe option. In the {$8, $12} treatment 1 player always choose the risky
option while 14 always choose the safe option. In the {$12, $8} treatment 39 players always choose the safe option and none
always choose the risky option.

18For 274 observations, N = 0; for 644 observations, N = 3; and for 122 observations, N = 6.
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Figure 7: Percentage of Period Two Risky Choices by Proportion of Successes Observed.

both treatments we observe the largest increase in the propensity to choose the risky option

occurring after observing at two successes, increases of 42% and 32% respectively. Finally,

the no information prior prediction for the {$12, $8} treatment is to choose the guaranteed

amount after observing anything less than three successes. Indeed, the only significant

increase in the propensity to choose the lottery occurs after observing three successes, an

increase of 27%.

We saw from the first period analysis that the Nash equilibrium predicts that players are

more likely to choose the risky option in the first period when they are in the {$4, $8} and

{$8, $12} treatments.19 It is in these treatments where cognitive dissonance would make a

player more likely to continue to play their first period choice even in the face of contradictory

evidence from the sample of first period draws. The left panel of Figure 7 shows that the

propensity to choose the risky option is greatest in these two treatments.

Table 5 reports the regression results for linear probability model estimates of second

period choices using both ordinary least squares. We estimate two equations using both

treatment variables for hypothesis tests (model 1) as well as controlling for player and round

fixed-effects (model 2). Models (1) and (2) include three types of variables: treatment

effects interacted with the dummy variable DXN , which is one when the critical value of

X is observed, treatment effects interacted with the value X −XSi
N , and a dummy variable

that is one if the first period choice was the risky option. The intercept in these models

corresponds to the mean proportion of players who chose the risky option when there was

19Indeed, when only one player chooses the risky option (i.e. N = 3), the data in Figure 8 shows that 99% and 97% choose
the risky option as X/N → 1.
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Table 5: Linear Probability Model Regression Results for Second Period Choices.

(1) (2)
Treatment {$4, $8} Bayes 0.48*** 0.57***

(0.07) (0.06)
Treatment {$8, $4} Bayes 0.38*** 0.41***

(0.07) (0.04)
Treatment {$8, $12} Bayes 0.28*** 0.31***

(0.10) (0.07)
Treatment {$12, $8} Bayes 0.09 0.11

(0.09) (0.07)
Treatment {$4, $8} Salience 0.02 0.01

(0.02) (0.02)
Treatment {$8, $4} Salience 0.08*** 0.06***

(0.02) (0.02)
Treatment {$8, $12} Salience 0.14*** 0.12***

(0.05) (0.04)
Treatment {$12, $8} Salience 0.09*** 0.08***

(0.02) (0.02)
Cognitive Dissonance 0.21*** 0.19***

(0.05) (0.04)
Constant 0.20*** 0.14

(0.02) (0.10)
Round Effects No Yes
Player Effects No Yes
R-squared 0.475 0.475
Notes: See the notes to Table 2.

no information generated from the first period decisions (i.e. N = 0).

The regression coefficients are interpreted as marginal effects given the linear specifica-

tion. Twenty percent of players choose the risky option in period two when N = 0 draws

are observed in period one. The coefficients on the treatments interacted with the dummy

variables for the Bayesian criterion being satisfied are the increases in the proportion of

players choosing the risky option when the Bayesian criterion that is satisfied. Thus, adding

this to the constant yields the proportion of risky choices made by these players. The regres-

sions indicate that the proportion who choose the risky option when the Bayesian criterion

has been met varies from 0.68 (model 1) to 0.71 (model 2) for treatment {$4, $8}; from 0.55

(model 2) to 0.58 (model 1) for treatment {$8, $4}; from 0.45 (models 2) to 0.48 (model 1) for

treatment {$8, $12}; and varies from 0.25 (model 2), which is not statistically different zero,

to 0.29 (model 1) for treatment {$12, $8}. The results suggest an increase in the salience of

the decision encourages players to choose the predicted choice, as all salience effects positive

in sign and are statistically different from zero in all but the {$4, $8} treatment. Players
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Table 6: Hypothesis Test Results for Second Period Choices.

Hypothesis (1) (2)
7: HO : β4,8A = β8,4A = β8,12A = β12,8A = 0 15.73 37.89

HA : βi,jA 6= 0 for at least one i, j (0.00) (0.00)
8: HO : β4,8B = β8,4B = β8,12B = β12,8B = 0 7.44 7.39

HA : βi,jB 6= 0 for at least one i, j (0.00) (0.00)
9: HO : βCD ≤ 0 17.04 25.73

HA : βCD > 0 (0.00) (0.00)
10: HO : β8,4A = β8,12A and β8,4B = β8,12B 1.46 and 1.65 2.28 and 2.08

HA : β8,4A 6= β8,12A or β8,4B 6= β8,12B , or both (0.15) (0.17) (0.13) (0.15)
Player Fixed-Effects N.A. 1.29

(0.09)
Round Fixed-Effects N.A. 0.63

(0.89)
Notes: The table reports F-statistics (p-values in parentheses) for the tests on the coeffi-
cients from Table 5.

also show a propensity to stick with their first period choices. The cognitive dissonance

parameter shows that a player who chooses the risky option in period one is between 20%

and 25% more likely to choose the risky option in period two.

The regression analysis permits formal testing of the hypotheses stated in Section 3.2.

We report the results of the hypotheses tests in Table 6. We summarize the results of the

hypotheses tests regarding period two decisions below.

Result 7. Both models reject the hypothesis that the probability of choosing the risky option

in the second period does not increase after observing the critical number of successes.

Result 8. Both models reject the hypothesis that salience has no effect upon deviations from

the Nash predictions in the second period.

Result 9. Both models reject the hypothesis that cognitive dissonance has no effect upon

deviations from the Nash predictions in the second period.

Result 10. Neither model rejects the hypothesis that players in the {$8, $4} treatment behave

the same as players in the {$8, $12} treatment.

We find support for the hypothesis that that the probability of choosing the risky option in

the second period increases after observing the critical number of successes; lending support

for Bayesian updating/reinforcement learning. We also find evidence that salience matters;

namely, the more the number of successes observed exceeds the critical number of successes,

the greater the probability of choosing the risky option in the second period. We also find
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evidence that cognitive dissonance influenced behavior. Specifically, if players’ beliefs were

such that they choose the lottery in the first period, they were more likely to do so in the

second period. Note that this psychological effect is not inconsistent with the game theoretic

model presented earlier. We do not explicitly induce prior beliefs. Hence, depending on the

extent to which beliefs are skewed towards the lottery, players may very well update their

beliefs in accordance with Bayes rule and still believe they were better off in the second

period, regardless of the proportion of successes observed. Finally, players in treatments

{$8, $4} and {$8, $12} should behave identically in the second period. We do not find a

statistical difference in these players’ second period behavior.

5 Discussion and Conclusions

We began with the question: how do information spillovers in a one-armed bandit game

affect agents’ decisions to take a risk, thereby providing information to others engaged in

similar activities? This is a fairly common decision setting and an understanding of the

information provided by players’ decisions can inform policy debates concerning the public

reporting of apprehension rates of various crimes, detection rates for tax evasion, success

rates for innovators, performance of new technology, and so on. In such settings, some

individuals will have private incentives to take risks but in doing so their behavior can

inform others of the likelihood of a good (or bad) payoff. Regulatory policy would be more

efficient if it incorporated the presence of such informational spillovers. The same can be said

for policy directed toward encouraging risk taking - such as, policies encouraging research

and development and/or the adoption of new technology. Future research will integrate our

findings with the investment models of Dixit and Pindyck (1999).

Obviously, many real-world situations where agents engage in strategic experimentation

are more complex than our laboratory environment. For example, the actions and outcomes

of other agents may only be partially observable. Also, payoffs may not be independent.

However, it is necessary to begin with a test of the simplest possible form of the game. After

all, if behavior in the simplest setting is inconsistent with theoretical predictions, then we

would not expect behavior in more complicated settings to conform with theory. Estab-

lishing behavioral regularities in the simplest possible scenario is a necessary prerequisite to

investigations of behavior in more complicated environments. To the best of our knowledge,

this is the first paper to test Nash equilibrium predictions in an armed-bandit problem with

information spillovers.
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Our laboratory results indicate that players in this setting exhibit behavior that is con-

sistent with observations from public goods experiments. We find players free-ride too much

when they should not, and too little when they should. Unlike most public goods settings,

free-riding in the bandit problem is Pareto optimal. Hence, to the extent that they may be

generalized, our results suggest that whether policy calls for a carrot or a stick depends upon

the benefit-cost ratio of an activity and whether the activity itself is beneficial (e.g. techno-

logical innovation) or detrimental (e.g. noncompliance) to society. When a risky activity is

beneficial to society then the incentives of individual agents and society are aligned. In the

high benefit-cost ratio game (i.e. the $4 type with a $8 type) we observe too much risk-taking

behavior and, by consequence, too much information provision. In such settings, a regulator

could tax benefits in order to discourage risk-taking. Likewise, in the low benefit-cost ratio

game (i.e. the $12 type with a $8 type), we observe less than optimal risk-taking behavior

and information provision. In these situations a regulator could subsidize costs in order to

encourage risk-taking. On the other hand, when a risky activity is detrimental to society,

then the incentives of individual agents and society are in conflict. Hence, a regulator should

do the exact opposite of the above policy recommendations.

Nonetheless, there are some encouraging results from the experiment that indicate policy

intervention may not be entirely necessary. For example, when only one player pulls the arm,

which accounts for about two-thirds of our observations, it is the predicted player at least 96%

of the time; the others free-ride as predicted. Furthermore, players respond to information

in a manner consistent with Bayesian updating/reinforcement with deviations attributable,

in part, to reward salience and to cognitive dissonance. Our results should motivate future

models of strategic experimentation to incorporate such factors.
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Kraemer, Carlo, Markus Nöth, and Martin Weber, “Information Aggregation with
Costly Information and Random Ordering: Experimental Evidence,” Journal of Economic
Behavior & Organization, 2006, 59, 423 – 432.

Lochner, Lance, “Individual Perceptions of the Criminal Justice System,” American Eco-
nomic Review, 2007, 97, 444 – 460.

McKelvey, Richard D. and Talbot Page, “Public and Private Information: An Exper-
imental Study of Information Pooling,” Econometrica, 1990, 58, 1321 – 1339.

30



Information Spillovers In a One-Armed Bandit Game Boyce, Bruner, and McKee

Meyer, Robert J. and Yong Shi, “Sequential Choice under Ambiguity: Intuitive Solu-
tions to the Armed-Bandit Problem,” Management Science, 1995, 41, 817 – 834.

Robbins, Herbert, “Some Aspects of the Sequential Design of Experiments,” Bulletin of
the American Mathematical Society, 1952, 55, 527 – 535.

Roberts, Kevin and Martin L. Weitzman, “Funding Criteria for Research, Development
and Exploration of Projects,” Econometrica, 1981, 49, 1261 – 1288.

Rothschild, Michael, “A Two-Armed Bandit Theory of Market Pricing,” Journal of Eco-
nomic Theory, 1974, 9, 185 – 202.

Sah, Raaj K., “Social Osmosis and Patterns of Crime,” The Journal of Political Economy,
1991, 99, 1272 – 1295.

Smith, Vernon L. and James M. Walker, “Monetary Rewards and Decision Cost in
Experimental Economics,” Economic Inquiry, 1993, 31, 245 – 261.

Smith, V.L., “Microeconomic Systems as an Experimental Science,” American Economic
Review, 1982, 72, 923 – 995.

Tversky, Amos and Daniel Kahneman, “Beliefs in the Law of Small Numbers,” Psy-
chological Bulletin, 1971, 76, 105 – 110.

and , “Availability: A Heuristic for Judging Frequency and Probability,” Cognitive
Psychology, 1973, 5, 207 – 232.

Weitzman, Martin L., “Optimal Search for the Best Alternative,” Econometrica, 1979,
47, 641 – 654.

31


