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Abstract. We experimentally examine equilibrium refinements in static and dynamic binary choice 

games of complete information with strategic complementarities known as ―entry‖ games. Examples 

include speculative attacks, bank runs and refinancing decisions by multiple lenders.  We explore 

behavior when the value of a payoff relevant state variable is known to all players in advance of making 

their action choices.  Such games give rise to multiple equilibria and coordination problems.  Our specific 

aim is to assess the predictive power of two different equilibrium selection principles. In static entry 

games, we test the theory of global games as an equilibrium selection device. This theory posits that 

players play games of complete information as if they were playing a related global game of incomplete 

information. In dynamic entry games, individuals decide not only whether to enter but also when to enter. 

Once entry occurs it is irreversible. The number of people who have already entered is part of the state 

description, and individuals can condition their decisions on that information. If the state variable does 

not indicate that entry is dominated, the efficient subgame perfect equilibrium prediction calls for all 

players to immediately choose to enter, thereby resolving the coordination problem. This subgame perfect 

entry threshold in the dynamic game will generically differ from the global game threshold in static 

versions of the same entry game. Nevertheless, our experimental findings suggest that entry thresholds in 

both static and dynamic versions of the same entry game are surprisingly similar. The mean entry 

threshold in the static game lies below the global game equilibrium threshold while the mean entry 

threshold in the dynamic game lies above the efficient subgame perfect equilibrium threshold. An 

important implication of this finding is that if one were to observe only the value of the state variable and 

the number of people who enter by the end of the game one could not determine whether the static or the 

dynamic game had been played.   
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1   Introduction 

 

Many games of complete information with strategic complementarities have multiple equilibria.  

An important class of such games may be labeled ‗entry games‘.  In an entry game an individual has two 

possible actions, ‗enter‘ and ‗not enter‘.  The payoff to a player who does not enter is a fixed amount, F, 

while the payoff to entering, ),,()( YmGe   depends in a monotonic way on the number of people who 

enter, m, and on a payoff-relevant parameter, Y, of the game.  In this class of games there exists a value of 

Y, Y , such that for YY   the dominant strategy is ‗not enter‘. There exists another value YY  , such 

that for YY   the dominant strategy is ‗enter‘.  For intermediate values ],,[ YYY   there are two 

equilibria in pure strategies, all ‗enter‘ or all ‗not enter‘.  

Financial markets provide important examples of such ‗entry‘ games.  For instance, this game 

form may represent situations of speculative attack on a currency (Obstfeld (1996), Morris and Shin 

(1998)), with Y representing a state in which the fundamentals are such that the currency is certain to be 

devalued if a single speculator sells the currency short, so that a short sale is certain to be profitable, while 

Y  represents a state in which the State holds sufficient reserves that it will certainly withstand any 

feasible attack by all currency speculators.  For other states, YYY   the State can withstand short 

sales from a fraction, )(Yf , of currency speculators. If less than )(Yf  agents ‗enter‘ all those who enter 

lose money while if more than )(Yf  ‗enter‘ all those who enter make a profit.  The same game form can 

be used to characterize the situation faced by a group of lenders, all of whom have debts that have come 

due from a particular borrower and find that the borrower has insufficient cash on hand to pay off more 

than some fraction of the outstanding debt (Morris and Shin (2006)). Given the borrower‘s cash holdings, 

Y, if a sufficient fraction )(Yf  of lenders agree to roll over the debt, the borrower need not default, but if 

too few lenders agree to a roll-over, a default occurs. 

Viewed as static games of complete information, standard game theory yields no prediction of 

how these entry games will be played when there are multiple equilibria.    However, Carlsson and van 

Damme (1993) propose an equilibrium refinement for 22 entry games that is based on the assumption 

that when players face the uncertainty associated with the multiplicity of equilibria in these games they 

effectively transform the game in their own minds to a related game of incomplete information.  The 

related game is called a ‗global game‘.  The global game consists of a game of incomplete information 

drawn from the set of all games, G, with the same form as that of the game of interest.  The initial 

common prior beliefs of the players with regard to the game actually being played are represented by a 

probability distribution with support on some subclass of G.  This support includes those games with 
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unique Nash equilibria in dominant strategies.  Prior to any choice of action by the players, Nature draws 

the values of the parameters of the payoff function from a commonly known distribution of those values.  

Each player then gets private information, possibly imprecise, with regard to the game Gg  that Nature 

has selected.  Players then choose their actions. As each player‘s signal is private information and it is 

common knowledge that these private signals are correlated, ―the global game approach provides a 

natural way to force players to link (all possible) games together and to analyze them simultaneously‖ 

(Carlsson and van Damme (1993 p.1013)). As shown by Carlsson and van Damme for the case of 22  

games of complete information, in the related global game the required equilibrium strategies for all 

possible realizations are cut-off strategies.  In the global game a player always chooses one action upon 

receiving a signal that comes from one portion of the probability distribution of signals and the other 

action when the realized signal comes from outside this set. This result has been generalized by Morris 

and Shin (2003) to a class of N2 symmetric games.  Unlike the original game of complete information 

with its multiplicity of equilibria, the global game of incomplete information has a unique Bayesian 

perfect equilibrium. Therefore, if all players play the game of complete information as though there were 

a common understanding that all players will play that game as if they were playing the related global 

game, the coordination problem is resolved.  In section 2 we describe an experiment that is designed to 

test the predictive power of the global game equilibrium with regard to the play of a related entry game of 

complete information. 

The theory of global games offers an equilibrium selection criterion for a static entry game.  

However, many entry games of interest are inherently dynamic, as individuals must decide not only 

whether to enter but also when to enter.  Therefore, we also study how individuals play a dynamic entry 

game of complete information in order to determine whether or not the ultimate pattern of entry is 

different in the dynamic entry game than in the static entry game.   In section 2 we describe the portion of 

our experiment that was designed to test whether play in the dynamic game corresponds to the sub-game 

perfect equilibrium and, more generally, whether the entry decisions in the dynamic game differ 

significantly from the entry decisions in the static version of the same complete information game. 

 

2   Related Literature 

In this section we situate our work within the current theoretical and experimental literature on 

static and dynamic entry games.  The paper most closely related to this one is the experimental study of 

Heinemann et al. (2004) testing Morris and Shin‘s (1998) model of speculative attacks.  In the Heinemann 

et al. design, subjects play sequences of static entry games under several treatment conditions that are 

chosen to test the comparative static implications of the theory. Their main treatment variable is whether 

there is common, complete information or private, noisy information about the state of fundamentals. 
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Their principal finding is that there is little difference in observed behavior under the different 

information treatment conditions.   They further find that behavior responded to variations in the 

threshold fundamental in the direction predicted by the theory of global games. As we elaborate upon 

below, their design provides only an indirect test of the hypothesis that the global game provides an 

equilibrium refinement of the game of complete information. 

Angeletos, Hellwig and Pavan (2007) present a model of a dynamic global game that is composed 

of a sequence of global games with the same fundamentals.  The sequence ends when the number of 

people who have entered crosses the threshold for a successful attack.  At each game in the sequence each 

player gets a new, imperfect signal and knows that no successful attack has already occurred.  They show 

that the knowledge that the game has not ended allows for a pattern of updating of priors that can produce 

multiple global game equilibria.  Shurchkov (2007) provides an experiment based on a two-period variant 

of this model. She finds behavior that is qualitatively consistent with the theory.  

Costain (2007) provides a model of a dynamic global game in which asynchronous moves allows 

learning from the past actions of others about the likely value of the underlying fundamentals.  Costain 

shows that herding behavior can lead to multiple outcomes from the same underlying fundamentals.  

Costain et al. (2007) provide experimental evidence of herding behavior that produce multiple outcomes 

in a dynamic asynchronous move global game with private signals.  

The multiplicity of global game outcomes in these dynamic games is related to learning about the 

underlying fundamentals that repeated play allows.  Therefore, these studies do not speak directly to the 

hypotheses we wish to test. 

Cheung and Friedman (2008) have conducted an experiment with an entry game played in 

continuous time.  Each player can at every point in time, t, choose to attack or to be passive.  An attack is 

costly and the cost accumulates as long as the subject is in attack mode.   When player i attacks at time t 

he contributes mass )(tai  to the total mass of attackers at t, B(t).  At time t there is a threshold for a 

successful attack T(t) such that, if B(t)>T(t), the game ends and those individuals whose attack was 

successful earn a positive net payoff at that point in time.  In their experiment, T(t) is not constant, but 

evolves over time.  The path of T is not common knowledge, but in some treatments individuals are either 

given the history of T(t) up to t or an imprecise history of its past values.  In these treatments subjects 

could, therefore, forecast the current and future path of T(t).  Their experiment is designed to test various 

hypotheses that have been suggested with regard to the determinants of success of speculative attacks.  It 

does not allow for any comparison of play of a static entry game of complete information with the play of 

a dynamic entry game of complete information. 

Gale (1995) considers an N-player, dynamic ―monotone‖ entry game that is similar to the 

dynamic game we study.  In Gale‘s game, a player‘s decision to enter (―invest‖) can take place at discrete 
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periods in time, t=1,2,…, is irreversible, and provides a flow of benefits that depends on the number of 

other players who have already entered by date t.  There is a critical number of players, n*, who must 

enter before entry is profitable. As the number of players, N, increases so does n*.  Gale shows that there 

is a subgame perfect equilibrium in which everyone delays entry until n* -1 periods have elapsed.  This 

equilibrium is supported by the off-equilibrium belief that if anyone were to enter before n*-1 periods 

have elapsed, no one else will enter prior to period n*-1 so early entry will be unprofitable.  Gale‘s game 

differs from the one we consider in that his game is indefinitely repeated and has payoffs that vary with 

the date of entry.   

Dasgupta, Steiner and Stewart (2007) analyze a dynamic entry game in which each player 

receives a sequence of signals about the true value of the fundamental. If the fundamental exceeds a 

critical value and all players enter, then all receive a positive payoff.  If the fundamental is favorable, but 

not all enter, those who do enter receive a negative payoff.  A player may enter at any time, but entry is 

irreversible.  Each entrant secures a payoff that is decreasing in absolute value with the time of entry.  As 

time passes, information becomes more nearly precise. They show that for any fundamental above the 

critical value, the probability that everyone will enter approaches 1 as time passes.  Furthermore, they 

show that when information is precise, if the fundamental exceeds the value at which all enter is the 

Pareto Optimal pattern of actions, everyone enters immediately.  This result is analogous to the 

characterization of the sub-game perfect equilibrium of our version of the dynamic entry game.   

 

3   Experimental Design 

Our experimental design builds upon and complements an earlier experiment by Heinemann, 

Nagel and Ockenfels (2004).  In their experiment, subjects play a sequence of entry games under one of 

two information conditions: complete information or incomplete information.  Only one information 

condition was used in a given experimental session.  In each of their sessions, all N subjects played the 

same sequence of N-person entry games. Let A denote the strategy ―don‘t enter‖ and B the strategy 

―enter.‖   In all treatments studied by Heinemann et al. (2004), each subject i has a payoff function of the 

form: 
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Here, F is a fixed payoff that is independent of the actions chosen by the other N-1 players, # B denotes 

the number of the N players including i who choose action B, Y is a random payoff parameter drawn from 

a known uniform distribution, that completely characterizes each game, and )(Yf is a monotonically 

decreasing function of Y that is fixed across all games in a session. 
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In the Heinemann et al. (2004) study, subjects are repeatedly presented with lists of entry games 

each of which differs in the value of Y.   In their complete information game treatment, every subject in a 

session receives the same list.  In their incomplete information treatment, random Y values (games) are 

drawn as before, but subjects are not given a list of different values of Y.  Instead, for each value of Y 

drawn, each subject i is given a signal, iX which is a random draw from a commonly known, uniform 

distribution centered on the unknown value of Y and having known support ].,[   YY   Each 

individual‘s signal of Y is drawn independently of the signals of others.  In both treatments, a subject is 

asked to specify an action A (no entry), or B (entry) for each game on the list. Once all subjects submitted 

their action list, the outcomes of the games on that list were presented to them. This procedure was 

repeated for 16 rounds.  Heinemann et al. find that in both information treatments the pattern of action 

choices of most subjects corresponds to a ―cut-off‖ strategy in which entry  is chosen only if the 

commonly observed Y value or the private signal X exceeds a certain threshold. The estimated mean 

threshold was smaller in the complete information treatment than in the incomplete information treatment.  

In both treatments, the estimated thresholds were consistently below the global game equilibrium 

threshold.  Heinemann et al. found that the estimated mean thresholds varied in response to changes in the 

payoff function in the direction predicted by the global game equilibrium and that the variance in the 

individual estimated thresholds decreased with experience. 

The equilibrium of the global game is defined in terms of a cut point strategy for all possible 

values of the true state Y, given a measure of noise in the signal, λ.  Therefore, the fact that Heinemann et 

al. found that the actions they elicited from subjects tended to conform to cut-off strategies in both of their 

information treatments provides support for the refinement hypothesis proposed by Carlsson and van 

Damme.  However, the support is only indirect.  A direct test would elicit both strategy choices for the 

global game and a sequence of action choices under different known values for the state variable, Y, from 

the same subjects in order to determine whether the actions of particular individuals when playing games 

of complete information conform to the actions that are implied by their strategy choice when playing the 

global game, as the proposed refinement hypothesizes.  This calls for a within-subject design and for the 

direct elicitation of cut-point strategy thresholds when playing the global game.   We build these features 

into our experimental design.1  

                                                 

 

 

 
1
 Commenting on the finding of Heinemann et al. (2004) of little difference in the way subjects play a game of 

complete information and a game of incomplete information, Hellwig (2002)  notes that uncertainty with regard to 

the value of the state variable is not the only uncertainty that may lead individuals to follow a cut-point strategy in a 

market entry game.  Uncertainty about risk preferences or other aspects of utility functions of players may also 
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In addition, in Heinemann et al.‘s design, subjects gained experience by repeatedly playing with 

the same group of subjects.  Consequently, the reduction in variance of individual thresholds as subjects 

gained experience might have reflected fixed group efforts at improving coordination in addition to 

learning in response to individual experience.  In our design, we attempt to reduce the likelihood of group 

efforts at coordination by running two games in a session simultaneously and randomly reassigning 

individuals to one or the other group after the play of each game. 

While the global game refinement applies to simultaneous move entry games, in many settings of 

interest, e.g., bank runs, refinancing decisions, etc., entrants do not have to move simultaneously.  

Consequently, in our design we also study behavior in a dynamic entry game with the same payoffs as 

used in the static entry game sessions, but where each of the subjects chooses not only whether to enter 

but also when to enter.  For the dynamic entry game, we continue to predict threshold behavior in entry 

decisions, however, the threshold is determined not via the global game solution concept but instead by 

subgame perfection as explained below. 

Finally, like Heinemann et al. (2004), we also consider the comparative static implications of 

changes in the model parameters. Specifically, we consider two different values of the fixed payment F in 

both the static and dynamic treatments. Changes in the value of F affect both the global game and 

subgame perfect equilibrium predictions. 

 

3.1 Specific Details 

The specific details of our experimental design are as follows. The experiment was conducted 

using Fischbacher‘s (2007) z-Tree software over networked PC workstations in the Pittsburgh 

Experimental Economics Laboratory.  Each experimental session consisted of  20 subjects with no prior 

experience in any of our treatments. Subjects were recruited from the general college student population 

of the University of Pittsburgh and Carnegie-Mellon University. Each session begins with the reading 

aloud of the written instructions (provided in the appendix) followed by play of a series of either 60 static 

or 30 dynamic entry games.  

At the start of each new entry game our computer program randomly assigns the 20 subjects to 

one of two groups of size N=10.  Subjects are informed of their random assignment to either ―group 1‖ or 

to ―group 2‖ at the start of each entry game, but the composition of the members of each group is 

                                                                                                                                                             

 

 

 
induce such behavior.  Of course, we are testing the assumption that in a game where there is no uncertainty with 

respect to the state variable individuals will choose actions that are consistent with the cut-off strategies we elicit 

from them.  The fact that we may not have complete control over individual utility functions simply biases the 

results in favor of subjects playing the game in action mode as they would play it under the strategy method. 
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anonymous, and no communication is possible among group members.  This design thus avoids the 

possibility of repeated game strategies that might arise under fixed groups of players (as in the design of 

Heinemann et al. (2004)).  Subjects are instructed that they will participate in a series of games where 

their payoff function is as described in (1) with the threshold number of players needed for entry to yield 

a positive payoff  equal to 

.60/)80(10)( YYf   

In the experiment, we use ),(ˆ Yf denoting the round-up of )(Yf  to the nearest integer in the set 

{1,2,…,10}. While this formula and the round-up rule are presented to subjects, we also provide subjects 

with tables using this formula for ease of reference – see the instructions for the details.  Thus, our payoff 

function is essentially identical to that used by Heinemann et al. (2004), except for the fact that we have 

groups of size 10 while they had groups of size 15 (we have modified )(Yf accordingly).  The Y values 

characterizing each ―game‖ are random draws from a uniform distribution over the interval [10, 90].  The 

distribution and support of the Y values, the payoff function (1), and )(Yf
 are all public information in all 

sessions of our experiment, as provided in the written instructions and written on a chalkboard for all to 

see. 

There are four treatment variables in our design.  The first treatment variable is the strategy space.  

In treatments labeled ‗C‘, the strategy space consists of two possible actions, {A, B}, corresponding to 

―not enter‖ and ―enter‖.  In this treatment the randomly drawn Y value is announced publicly prior to the 

choice of a strategy.  In treatments labeled ‗G‘, the Y value is not drawn until all 10 subjects have 

submitted their ―cut-point‖ strategies.  The strategy space in G treatments consists of the set of integers, I, 

where {10<I<90}.  These correspond to cut-point strategies such that if the randomly drawn value Y> I, 

the action that will be automatically chosen for the subject (by the computer program) is ―enter‖ (choice 

B) otherwise the action that will be automatically chosen for the subject is ―not enter‖ (choice A).  

The second treatment variable concerns the value of the fixed payoff F earned by all participants 

who choose not to enter (choice A).   Variations in this parameter shift the theoretical equilibrium cut-

point strategy in the global game in which the noise of the signal goes to zero and also affect the subgame 

perfect equilibria of the dynamic game as explained below.  We consider two values for F, F=20 and 

F=50; we use only one of these two values of F in each experimental session. 

A third treatment variable is whether the game is ‗static‘ or ‗dynamic‘.  In the static treatment, a 

game consists of a single decision round.  In the dynamic game treatment, each game consists of n=10 

decision rounds, r=1,2,…10.  Following the first round of a dynamic game, all individuals are informed at 

the start of each new round about the number of individuals in their group of 10 who have previously 

entered in that game.  Each individual who has not already entered (chosen B) then decides whether to 
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enter in that round (choice B) or to stay out (choice A).  Entry is irreversible. Thus, to preserve the right to 

enter at a later round of a dynamic game, a subject would have to choose not to enter (choice A). The 

dynamic game ends after 10 rounds. 

As mentioned earlier, the payoff to a player who chooses not to enter (choice A) is always fixed 

at F>0.   The payoff to a player who enters (chooses B) in a game is determined by the number of players 

in their group of 10 who have entered by the end of the static or dynamic game (round r= 10) and by the 

value of the state variable, Y.   If the number of entrants, #B, meets or exceeds ),(Yf rounded to the 

nearest integer, ),(ˆ Yf then all those who have chosen to enter receive a payoff  of             where d 

is a fixed entry delay cost and    is the round number of the (dynamic) game in which player i first chose 

to enter (made irreversible choice B); in the static game, there is only one round, so      for any entrant 

and successful entrants earn Y.  If the number of entrants is less than ),(ˆ Yf  those who have chosen to 

enter receive          .  Again, in the static game, unsuccessful entrants simply earn 0. 

A fourth and final treatment variable pertains to the dynamic game only and involves the cost of 

delayed entry,  .  In our baseline dynamic game treatment, there is no entry delay cost, i.e.,    .  In our 

delay cost (DC) dynamic game treatment,      , so that subjects are charged a cost of delaying their 

decision to enter (choice B) beyond the very first round 1, at the rate of ½ point per round delayed; that is, 

as in the static game, there is no cost for an immediate choice of entry in round 1 of the dynamic game but 

each additional round of delay beyond round 1 reduces a subjects‘ payoff by ½ point (up to a maximum 

loss of -4.5 points if they delayed entry until round 10).  If they chose not to enter in all 10 periods 

(always chose A), there is no delay cost charged and subjects earned the fixed payoff amount, F.  

The timing of events in a static game is as follows. At the start of each static game, subjects are 

randomly assigned to one of two, 10-player groups and a value of Y is drawn at random.  The Y number 

chosen is the same for both groups. In the C treatment, this Y number is announced to the subjects on their 

computer screens.  Each subject then uses their mouse to click on their choice, either not enter (A) or 

enter (B).   After all subjects submitted their choices, the game is over. Each subject is then reminded of 

the Y number and their own choice (A or B). They are further informed of their own payoff for the game, 

the number in their group of 10 who ―entered‖ (chose B) in that game and the payoff earned by those who 

―entered‖ (Y or 0);  the payoff to non-entry is a known constant, F.  In the G treatment, the Y number is 

not announced until after the game has been played.  Instead, each subject chooses a cut-off strategy—an 

integer from the set {10<I<90}—for the game and enters it when prompted by their computer terminal. 

Once all subjects had submitted their cut-off numbers, the computer program automatically selects an 

action, A or B for each subject, based on the value of Y chosen for that game and the subject‘s cut-off 

strategy.  Subjects were then informed of the Y number, reminded of their cut-off value and shown the 
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action chosen for them by the computer program based on their cut-off value.  As in the C treatment, they 

were then informed of their individual payoff for the game, the number in their group of 10 who had (via 

their threshold) chosen to enter in that game and the payoff earned by those who chose to enter (Y or 0).  

Before the next static game begins, subjects are once again randomly assigned to one of the two groups of 

size 10.   

In all ‗static‘ game sessions, we used a within-subjects design where subjects played half of the 

60 games under condition C and the other half under condition G.  The order of play of the two conditions 

C and G was varied from session to session. In each session, the changeover from condition G to C or 

from condition C to G was not announced in advance; instead, following the first 30 entry games, the 

session was briefly paused while subjects were given new ‗continuation‘ instructions on the rules of play 

for the remaining 30 entry games (see the instructions in the appendix for further details). 

All dynamic game sessions both with and without delay costs were conducted only under the C 

treatment strategy space. In each dynamic game session, 30, 10-round dynamic games are played.  The 

timing of events in a dynamic game is as follows. At the start of each dynamic game (as in the static-C 

game) a value of Y is drawn at random and shown to all group members. In the dynamic treatment, this 

value of Y remains fixed over all 10 rounds of the dynamic game, as does the composition of the group.  

Subjects then decide whether to enter or not (B or A) by using their mouse to click on their action choice. 

In treatments with and without delay costs, a decision to enter in the first round was costless. In the delay 

cost dynamic game treatment, a delay cost of ½ cent per round was assessed in rounds 2,,3,.. 10 for those 

who delayed entry beyond the first round.  At the end of each round of the dynamic game, subjects were 

told the cumulative number in their group of size 10 (including themselves) who had chosen to enter in all 

prior rounds. If the 10th round had not yet been played, the dynamic game continued with another round.  

Subjects were informed that a decision to enter (a B choice) once made, was irreversible and that 

they could only preserve the right to enter in a later round of the game (or never enter at all) by using their 

mouse to click on choice A (not enter) in each round in which they wanted to delay entry. Thus, even in 

the treatment without delay costs, there was some psychic cost to having to repeatedly click a mouse 

button for choice A (delay entering).  Subjects who had chosen to enter in any prior round of the dynamic 

game (by clicking on choice B) did not have to make any further choice for the remaining rounds of that 

dynamic game.  The payoff function for entry in the dynamic game sessions is the same one used in the 

static game, with two differences. First, in the dynamic game, the payoff depended on the number who 

had entered by the end of the final, 10th round; this number was compared with )(ˆ Yf to determine the 

payoff to those who chose to enter (payoffs were either Y or 0), as in the static game. Second, in the 

dynamic game with delay costs, payoffs were reduced if a player chose to enter after the first round. 
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Subjects earned their payoff in ―points‖ (which were equal to either F, the randomly drawn Y 

number, or 0) from all games played in a session.  In the static treatment, points were converted into 

dollars at the rate of 1 point =1/2 cent, while in the dynamic treatment which had half as many games, the 

conversion factor was 1 point=1 cent. In addition, subjects in all sessions received a $5 show-up payment. 

Total payments for the 60 games played in the static-game sessions averaged $19.95 for a 75 minute 

session. Total payments for the 30 games played in the dynamic-game sessions averaged $20.21 for a 75 

minute session. 

 

3.2    Predictions 

In the static game, we have the following predictions. First, if ,FYY   the maximal payoff 

from entering, Y, is dominated by the payoff from not entering, F, so ―not enter‖ (choice A) is a player‘s 

dominant strategy.2  Similarly, if FfYY   )1(ˆ 1
(as in our set-up), a decision to enter by a single 

individual (the 1 in the inverse mapping,
1ˆ f ) guarantees a payoff of ,FY  so ―enter‖ (choice B) is a 

player‘s dominant strategy.  Given our specification for f and our rounding rule, we have 72Y . The 

lower bound, Y  varies directly with the treatment variable F: ,20Y .50Y   For YYY  there are 

two equilibria in pure strategies: all-enter and all-not-enter. This multiplicity is resolved in the global 

game approach of Morris and Shin (1998) by assuming that players do not know the true value of the 

state variable Y; instead each player i receives a private signal iX  of the Y value that is drawn randomly 

from a uniform distribution over ],[   YY , where  represents a small amount of noise.  Morris and 

Shin show that this private information game has a unique threshold 
*X below which players choose not 

to enter and above which players choose to enter.  Heinemann (2000) further shows that in the limit, as 

the noise term converges to zero, the threshold signal
*X converges to a threshold value, .*Y  As we do not 

consider the case of noisy signals – subjects in our experiment are either informed in advance of the value 

of Y or learn it after all have submitted their cut-off thresholds – this limiting threshold value 
*Y  is the 

relevant global game prediction for our static game.   In our parameterization, 
*Y is the solution to 

.10]1)(ˆ10[ ** FYfY   Intuitively, 
*Y is the value of Y for which players are indifferent between 

entering and not entering. For F=20, we have 42* Y  and for F=50, we have 62* Y . 

                                                 

 

 

 
2 If YFY  , risk neutral individuals should be indifferent between choosing enter or not enter. 
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In the dynamic game it remains a dominant strategy for players to not enter if FYY   and to 

enter if ).1(ˆ 1 fYY  Unlike the static game, in the dynamic game, the N=10 individuals face a game 

involving N=10 rounds of play. A player‘s decision to enter prior to the last (10th) round of the dynamic 

game has an influence on the decisions of other players in future rounds. This feature of the dynamic 

game implies that subgame perfection is an appropriate solution concept. 

In the dynamic game, the number of players who have entered prior to round k is part of the 

description of the state of the game at round k.  If Y>F and the number who have already entered is

,1)(ˆ Yf  then in round k the optimal response for a player who has not previously entered is to choose 

`enter‘.  This observation has two important implications: (1) Since the strategy of a player in the dynamic 

game must specify an action in each round for all possible states of that round, if Y>F there cannot be any 

symmetric subgame perfect equilibrium strategy profile in which no one enters; (2) When Y>F there 

cannot be any symmetric subgame perfect equilibrium in mixed strategies, since the play of mixed 

strategies in the dynamic game can produce a state in which 1)(ˆ Yf  players have previously entered and 

in that state, the decision to enter strictly dominates non-entry.  It follows from observations (1-2) that if 

Y>F, then in any symmetric subgame perfect equilibrium it must be the case that all N players choose to 

enter. 

When Y>F, it is straightforward to show, via backward induction, the existence of subgame 

perfect equilibria in which everyone enters. For any value of Y, the minimum number who must have 

entered for all those who chose enter to receive a positive payoff is given by  )(ˆ Yf . Thus in round k 

there is a critical number, 
),,( kYc  who must have entered by the beginning of round k for it to possibly 

be a best response for someone who has not yet entered  to enter in round k.   For k=N the critical number 

is .1)(ˆ Yf  Consequently, the critical number for `entry‘ to be a best response in round N-1 is 

.2)(ˆ)2),(ˆ(  YfNYfc By backward induction, the critical number at the beginning of round N-k is  

.1)()(ˆ)),(ˆ(  kNYfkYfc  Since NYf )(ˆ for all Y, the value of c(Y, k=1) < 0 for all Y.  As 

noted earlier, in the static game it is never a best response to enter if .YFY   Therefore, for any 

FYY  , there is a symmetric, subgame perfect equilibrium in which everyone enters immediately 

(i.e., in round 1), but if YY   no one enters (in any round).  Note that until a player makes a decision to 

enter (which is irreversible) that player must continue to make decisions up until the 10th round of play. 

Therefore if there is any psychic cost at all to making a decision it is a strictly dominant strategy to enter 

immediately in the first round whenever Y>F so that the subgame perfect equilibrium is unique. If there is 
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no cost to delay there exist other symmetric subgame perfect equilibria of the form ―if Y>F, then enter in 

period k.‖3 

Notice that this subgame perfect equilibrium refinement leads to a sharp difference from the 

global game equilibrium refinement of the static game.  In the static game the global game refinement 

predicts no entry for Y* > Y > F while in the dynamic game, symmetric subgame perfection implies that 

every one enters for all Y>F.  This subgame perfect equilibrium is also Pareto efficient, whereas the 

global game equilibrium for the static game is not, as the latter involves a threshold that is greater than F .  

Summarizing, the global game refinement for the static game predicts a significantly higher and 

less efficient entry threshold for the state variable, Y, than the subgame perfect refinement predicts for the 

dynamic game.  Our aim is to assess the extent to which these thresholds characterize actual behavior 

within and across the two treatments.  In addition, our variation in the value of F (the certain payoff to 

non-entry) enables us to assess the comparative static implications of both the global game (GG) and 

subgame perfect (SGP) solution concepts within a single class of games (static or dynamic). 

 

4. Empirical findings 

 

Table 1: Experimental Design and Predicted Entry Thresholds 

Treatment Conditions  

No. of 

Sessions 

Equilibrium Concept 

GG or SGP, Predicted 

Entry Threshold for Y 
Game Type: 

Static/Dynamic Strategy Space, No. Rounds F 

Static C 30 Rounds,  G 30 Rounds 20 3 GG, 42 

Static G 30 Rounds,  C 30 Rounds 20 3 GG, 42 

Dynamic C 30 Rounds  20 6 SGP, 21 

Dynamic C+Delay Costs, 30 Rounds 20 6 SGP, 21 

Static C 30 Rounds,  G 30 Rounds 50 2 GG, 62 

Static G 30 Rounds,  C 30 Rounds 50 2 GG, 62 

Dynamic  C 30 Rounds 50 4 SGP, 51 

 

We report results from 26 sessions involving 20 subjects each – a total of 520 subjects. Our 

experimental design, treatment conditions, the number of sessions conducted of each treatment and our 

equilibrium predictions are outlined in Table 1.   

                                                 

 

 

 
3 We chose not to have an explicit monetary cost to delay in the dynamic game so that the payoffs in that game 

would be comparable to those of the static game. However, as we noted earlier, in our design those choosing to 

delay were required to continually use their mouse to click on either option A (not enter) or option B (enter). Once a 

subject had chosen option B he had no further choice to make, as entry was irreversible. Thus, the small physical 

(mouse clicks) and decision/psychic costs associated with delaying a decision to enter should have sufficed to rule 

out any subgame perfect equilibrium of the dynamic game where rational actors all enter in any round k>1.    
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 The presentation of our findings is organized around the predictions described in the previous 

section. 

 

4.1 Dominated strategies and efficiency 

 

Table 2:  Dominated Strategies and Efficiency  

Session 

Number Treatment Conditions 

F

= 

 

 

Percent of 

subjects 

who never  

play a 

dominated 

strategy* 

 

Average 

frequency  

of the play of 

dominated 

strategies by 

those playing 

them. 

 

 

 

Payoff 

efficiency 

relative to 

equilibrium 

prediction† 

Equilibrium 

Concept- 

Predicted 

Entry 

Threshold 

1 Static C,G 20 0.80 0.04 1.01 GG-42 

2 Static G,C 20 0.55 0.07 0.99 GG-42 

3 Static C,G 20 0.60 0.03 0.99 GG-42 

4 Static G,C 20 0.75 0.02 1.04 GG-42 

5 Static C,G 20 0.80 0.02 0.91 GG-42 

6 Static G,C 20 0.60 0.02 0.91 GG-42 

7 Dynamic, C 20 0.95 0.03 0.91 SGP-21 

8 Dynamic, C 20 1.00 0.00 0.94 SGP-21 

9 Dynamic, C 20 0.80 0.04 0.96 SGP-21 

10 Dynamic, C 20 1.00 0.00 0.97 SGP-21 

11 Dynamic, C 20      0.95 0.03 0.90 SGP-21 

12 Dynamic, C 20 0.95 0.03 0.90 SGP-21 

13 Dynamic, C+DelayCost 20 0.95 0.03 0.92 SGP-21 

14 Dynamic, C+DelayCost 20 0.90 0.03 0.92 SGP-21 

15 Dynamic, C+DelayCost 20 0.95 0.03 0.92 SGP-21 

16 Dynamic, C+DelayCost 20 0.90 0.03 0.98 SGP-21 

17 Dynamic, C+DelayCost 20 0.65 0.04 0.89 SGP-21 

18 Dynamic, C+DelayCost 20 0.90 0.03 0.95 SGP-21 

19 Static C,G 50 0.65 0.04 0.98 GG-62 

20 Static G,C 50 0.70 0.04 0.99 GG-62 

21 Static C,G 50 0.75 0.02 1.00 GG-62 

22 Static G,C 50 0.35 0.05 1.00 GG-62 

23 Dynamic, C 50 0.90 0.01 0.99 SGP-51 

24 Dynamic, C 50 0.70 0.02 0.98 SGP-51 

25 Dynamic, C 50 0.80 0.01 0.99 SGP-51 

26 Dynamic, C 50 1.00 0.00 0.99 SGP-51 

Sessions 1-26 Overall Avgs: 0.80 0.03 0.96  

*Dominated strategies are entering (choice B) when FY   or not entering (choice A) when YY  . For 

the Dynamic treatment, entry decisions are assessed as of the final (10th) round of the game. † Payoff 

efficiency calculations include losses due to delay costs in the Dynamic treatment with delay costs. 
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A basic test of rationality is whether subjects avoided play of dominated strategies.  Recall that if 

,FYY   the dominant strategy is to not enter, while if ),1(ˆ 1 fYY  
72)1(ˆ( 1 f  in our set-up), 

the dominant strategy is to enter.  For all other values of Y, neither strategy (non-entry or entry) is 

dominant.  Table 2 reports the percentage of subjects who never played a dominated strategy in any of the 

30-60 games of each session.  Among the subjects who did play dominated strategies, Table 2 reports the 

average frequency with which dominated strategies were played.  These frequencies, shown in columns 4-

5 of Table 2, provide support for the notion that most subjects are frequently behaving rationally. 

Specifically, we have: 

 

Finding 1:  Eighty percent of subjects never played a dominated strategy in any (static or dynamic) entry 

game. Among the remaining twenty percent, the frequency of play of dominated strategies is low, 

averaging just 3%. 

 

Finding 1 is consistent with Heinemann et al.‘s (2004) finding that subjects in their design largely 

avoided the play of dominated strategies.   

  Table 2 also reports on a measure of payoff efficiency, specifically, how subjects‘ payoffs 

compare with those they could have earned if all had played according to the threshold strategies 

specified by the equilibrium solution concept for the class of entry games examined in each session. For 

instance, session 1 involved play of a static entry game with F=20. Under the global game (GG) solution 

concept, the threshold prediction is that subjects enter if 42Y  and don‘t enter otherwise.  Our payoff 

efficiency measure takes the sum of all subjects‘ payoffs for all rounds played in the session and divides 

that number by the sum of the payoffs that all subjects would have earned had they faced the exact same 

sequence of randomly drawn Y numbers and played according to the global game equilibrium strategy.  

For session 1, the payoff efficiency number of 1.01 indicates subjects earned 1% more, on average, than 

they would have by playing according to the ―GG-42‖ equilibrium prediction. For the dynamic game 

sessions, the solution concept is subgame perfection, SGP, and the threshold is the lower, Pareto efficient 

one where all choose to enter whenever Y>F.  Based on data in the next-to-last column of Table 2 we 

have: 

 

Finding 2:  Subjects earned payoffs that averaged 96% of the payoffs they could have earned by 

following either the global game (static treatment) or the subgame perfect (dynamic treatment) 

equilibrium threshold strategies. 
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We further observe that, using nonparametric two-sided Wilcoxon-Mann-Whitney tests on the 

session level averages reported in Table 2, there is no difference in payoff efficiency relative to 

equilibrium prediction, between the six static sessions where F=20 and the four static sessions where 

F=50. There is also no difference in payoff efficiency relative to equilibrium prediction between the six 

dynamic game sessions where F=20 and the six dynamic game sessions with delay costs where F=20, 

p>.10. However, payoff efficiency is statistically greater in the four dynamic game sessions where F=50 

as compared with the six dynamic game sessions with or without delay costs where F=20 (p≤.01 in both 

tests). Nevertheless, efficiency is very high across all treatments and Finding 2 suggests that both 

equilibrium refinements may be characterizing subject behavior rather well.  However, as we shall see, in 

the next two sections, the payoff efficiency evidence does not indicate that subjects were playing 

according to the prescribed equilibrium threshold strategies.   

  

4.2 Elicited entry thresholds 

 

Finding 3:  The elicited thresholds in the static-G treatment games are consistently different from the 

global game prediction. 

Table 3:  Elicited Entry Thresholds, Static G-treatment Sessions 

Sess 

No. 

Treatment 

Conditions F= Mean 
GY  

 

Std Dev. 

Equilibrium Concept-

Pred. Entry Threshold 

1 Static C,G 20 31.24 12.93 GG-42 

2 Static G,C 20 29.25 16.81 GG-42 

3 Static C,G 20 27.97 12.10 GG-42 

4 Static G,C 20 40.77 15.46 GG-42 

5 Static C,G 20 33.78 11.74 GG-42 

6 Static G,C 20 31.45 13.99 GG-42 

19 Static C,G 50 61.80 14.46 GG-62 

20 Static G,C 50 55.32 15.36 GG-62 

21 Static C,G 50 50.20   8.49 GG-62 

22 Static G,C 50 55.36 11.98 GG-62 

 

 Table 3 reports the mean and standard deviation of the elicited thresholds, ,GY from all static-G 

treatment sessions of our design.  (For C-treatment sessions (static or dynamic), the thresholds were not 

elicited and can only be estimated on the basis of observed choices as we do in the following section).  

Specifically, for each static-G session, we calculated the mean elicited cut-off value provided by all 20 

subjects over all 30 rounds of the session.  For the six static-G treatment sessions (numbers 1-6) with 

F=20, the average elicited cut-off value for Y is 32.41 while in the four static-G treatment sessions 

(numbers 19-22) with F=50, the average elicited cut-off value for Y is 55.67.  Both of these averages, as 
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well as most of the session-level averages lie well below the global game predictions of 42 and 62 

respectively, though there is a greater departure from the global game prediction in the case of F=20 than 

in the case of F=50.  The latter difference mainly reflects the difference between the global game 

prediction, 
*Y  and the value of F, a difference of 22 in the case of F=20 but a difference of only 12 in the 

case of F=50.  If we instead consider the proportion of the distance, FY *
, we find that in the F=20 

treatment subjects‘ average entry threshold is 56.4% of this distance, whereas in the F=50 treatment, 

subjects‘ average entry threshold is lower, at 47.25% of this distance, so in this sense, the global game 

prediction is closer to characterizing behavior in the F=20 than in the F=50 treatment of the static-G 

treatment. Also, contrary to the global game prediction, we find that there is significant variance in the 

distributions of these elicited thresholds, i.e., the standard deviations are large. 

 

4.3 Estimated entry thresholds 

 

For the static- and dynamic-C treatment sessions, empirical entry thresholds have to be estimated 

from observed entry decisions. We follow Heinemann et al. (2004) and estimate a logit regression model 

in which the binary entry decision depends on a constant and the Y value, using all data (binary entry 

decisions and associated Y values) from a given session.  That is, we use maximum likelihood estimation 

to find the coefficient estimates a and b, that are a best fit to the logit response function 

,
1

)Pr(
bYa

bYa

e

e
B






  

where a is the coefficient on the constant term and b is the coefficient on the Y-value.  Since Pr(B)=.5 

when Y=-a/b, we may regard –a/b as an estimate of the entry threshold, as it represents the mean of the 

fitted logit distribution. The associated standard deviation is given by .
3b


  We estimate the entry 

threshold and its standard deviation for the static- and dynamic- C treatment sessions as well as for the 

static-G treatment sessions; in the latter case, we can compare the logit estimated thresholds and standard 

deviations with the actual mean and standard deviation of the elicited cut-points as reported in Table 3. 

For the dynamic-C treatment, we use each player‘s entry decision as of the final, 10th round of each game. 

For each of our 26 sessions, Table 4 reports the logit estimates of a, b, the ratio –a/b, and the 

associated standard deviations.  Note that we divide the static game sessions up according to the 

information treatment, C or G.  There were 30 games played of each static information treatment.  For the 

dynamic game, we use entry outcomes as of the 10th round of each of the 30 games. Thus, each estimate 

in Table 4 is based on data from 30 games played by 20 subjects (consisting of 600 individual 

observations).   
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Table 4 Logit Coefficient Estimates,  Implied Entry Threshold and Standard Deviation 

Sess 

No. 

Session Characteristics C Treatment Estimates G Treatment Estimates Equilib.  

Concept 

-Pred.  
F Game Type Order A b  -a/b 3b


 

a b  -a/b 3b


 

1 20 Static  C, G -4.63 0.15 31.65 12.40 -4.10 0.13 31.30 13.85 GG-42 

2 20 Static G, C -6.77 0.24 28.57 7.65 -2.26 0.09 25.39 20.38 GG-42 

3 20 Static C, G -7.90 0.24 32.92 7.56 -3.85 0.15 25.67 12.09 GG-42 

4 20 Static G, C -8.60 0.38 22.63 4.77 -4.70 0.12 39.17 15.11 GG-42 

5 20 Static C, G -10.67 0.28 37.84 6.43 -4.97 0.15 34.12 12.44 GG-42 

6 20 Static G, C -7.97 0.29 27.36 6.22 -3.31 0.11 30.52 16.72 GG-42 

7 20 Dynamic C -6.63 0.21 31.89 8.72  n/a  n/a  n/a  n/a SGP-21 

8 20 Dynamic C -11.18 0.45 24.77 4.02  n/a  n/a  n/a  n/a SGP-21 

9 20 Dynamic C -6.88 0.30 22.77 6.00  n/a  n/a  n/a  n/a SGP-21 

10 20 Dynamic C -6.28 0.24 26.17 7.56  n/a  n/a  n/a  n/a SGP-21 

11 20 Dynamic C -11.47 0.32 36.19 5.72  n/a  n/a  n/a  n/a SGP-21 

12 20 Dynamic C -9.47 0.32 29.22 5.59  n/a  n/a  n/a  n/a SGP-21 

13 20 Dynamic+DC C -10.60 0.43 24.72 4.23  n/a  n/a  n/a  n/a SGP-21 

14 20 Dynamic+DC C -9.37 0.39 23.92 4.63  n/a  n/a  n/a  n/a SGP-21 

15 20 Dynamic+DC C -11.18 0.36 31.28 5.07  n/a  n/a  n/a  n/a SGP-21 

16 20 Dynamic+DC C -8.76 0.48 18.28 3.79  n/a  n/a  n/a  n/a SGP-21 

17 20 Dynamic+DC C -6.29 0.19 33.64 9.71  n/a  n/a  n/a  n/a SGP-21 

18 20 Dynamic+DC C -10.19 0.44 23.01 4.10  n/a  n/a  n/a  n/a SGP-21 

19 50 Static  C, G -9.54 0.18 54.47 10.35 -7.87 0.13 59.99 13.83 GG-62 

20 50 Static G, C -18.89 0.36 52.36 5.03 -5.03 0.09 55.21 19.92 GG-62 

21 50 Static C, G -16.97 0.34 51.46 5.41 -11.42 0.22 51.71 8.21 GG-62 

22 50 Static G, C -14.40 0.29 49.65 6.36 -7.08 0.13 54.46 14.52 GG-62 

23 50 Dynamic C -41.33 0.83 49.95 2.19  n/a  n/a  n/a n/a SGP-51 

24 50 Dynamic C -15.31 0.31 48.90 5.79  n/a  n/a  n/a  n/a SGP-51 

25 50 Dynamic C -19.60 0.38 51.58 4.82  n/a  n/a  n/a n/a SGP-51 

26 50 Dynamic C -49.81 0.97 51.35 1.87  n/a  n/a  n/a  n/a SGP-51 

 

Comparing the elicited entry thresholds in Table 3 with the estimated thresholds in Table 4 for the static-

G treatment sessions we have: 

 

Finding 4: Estimated entry thresholds and standard deviations for the static-G treatments (shown in 

italics in Table 4) are not significantly different from (and are a good approximation to) the elicited entry 

thresholds and standard deviations for the static-G treatments (as given in Table 3). 

 

Using a two-sided, Wilcoxon matched-pairs signed ranks test, we cannot reject the null hypothesis of no 

difference between the mean elicited entry thresholds and standard deviations as reported in Table 3 and 

the estimated entry thresholds and standard deviations as reported in Table 4 using session-level data for 

both the F=20 and F=50 treatments (p>.10 for all tests). This finding provides us with some assurance 
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that the logit-estimated thresholds and associated standard deviations are a good approximation to those 

that were elicited from subjects in our static-G treatment. 

 

Finding 5:  In the F=20 treatment, the estimated thresholds in the static-G treatment are not significantly 

different from the estimated thresholds in the static-C treatment.  However, in the F=50 treatment, we 

reject the null hypothesis of no difference between the estimated thresholds in the static-G and static C-

treatments. 

 

When the six estimated entry thresholds for the static C-treatment of the F=20 static game are 

compared with the corresponding six entry thresholds for the static G-treatment of the same game, we 

find no significant difference (Wilcoxon matched-pairs signed-ranks test (2-sided test, p=.60).  However, 

the four estimated entry thresholds for the G-treatment of the static F=50 game are significantly higher 

than the corresponding estimated entry thresholds for the C-treatment of the same game (Wilcoxon 

matched-pairs signed-ranks test (2-sided test, p=.07). 

 

Finding 6: Estimated entry thresholds in the static-C treatment sessions are indistinguishable from 

estimated entry thresholds in the corresponding dynamic treatment sessions (with the same F-value) 

without delay costs. 

 

Using a nonparametric Wilcoxon-Mann-Whitney test, we cannot reject the null hypothesis of no 

difference between the six estimated entry thresholds for the static C-treatment of the F=20 game and six 

estimated thresholds for the dynamic, F=20 game without delay costs (two-sided test, p=.63).   For the 

F=50 game, the Wilcoxon-Mann-Whitney test again indicates that we cannot reject the null hypothesis 

that the four estimated thresholds for the static C-treatment of the F=50 game come from the same 

distribution as the four estimated thresholds for the dynamic, F=50 game (2-sided test, p=.24). 

 

Finding 7: Delay costs in the dynamic game do not lead to any significant difference in estimated entry 

thresholds in the F=20 treatment. 

 

Again using a nonparametric Wilcoxon-Mann-Whitney test, we find we cannot reject the null 

hypothesis of no difference between the six estimated entry thresholds for the dynamic, F=20 game with 

delay costs and 1) the six estimated entry thresholds for the static, F=20 game (p=.26), or 2) the six 

estimated entry thresholds for the dynamic, F=20 game without delay costs (p=.34). Thus, despite the fact 

that delay costs make the efficient equilibrium of the dynamic game the unique subgame perfect 
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equilibrium, there is little difference in behavior relative to static or dynamic versions of the same game 

without delay costs. While we did not consider the case of delay costs in the F=50 dynamic game, we 

doubt the addition of such costs would alter entry behavior in that game either, as the estimated entry 

thresholds for the four F=50 dynamic game sessions reported in Table 4 are already around 50, the 

efficient equilibrium threshold. 

 

For further evidence confirming the findings above, we report the results of two simple OLS 

regressions involving the 36 logit-estimated entry thresholds reported in Table 4 (the values of -a/b) and 

the 36 estimated standard deviations (
3b


) on several dummy variables: 1G  if the G, ―cut-point 

strategy‖ treatment was used, 0 otherwise; 150   if F=50, 0 otherwise, 1D  if the entry game was 

dynamic, 0 otherwise, 1DC  if there were delay costs, 0 otherwise as well as two multiplicative 

dummies,
50 G

 and 
D 50

. 

The OLS regression results—with standard errors (in parentheses) that have been corrected for clustering 

of estimates within (static-treatment) sessions using a Huber-White sandwich estimator— are presented in 

Table 5.   

  For the regression involving the estimated entry threshold, we see that the change in the value of 

F from 20 to 50 significantly increases this threshold, as predicted, from an estimated mean of about 30 to 

one of about 52.  However, all other treatment conditions appear to be irrelevant for the determination of 

the entry threshold, as the coefficient estimates on the dummy variables ,  , GD   
50  ,  GDC

 and 

50 G
are not significantly different from zero.  

For the regression involving the standard deviation as the dependent variable, we find that the 

only treatment condition with a significant effect on the standard deviation of entry decisions is whether 

subjects submitted cut-off strategies or made action choices as indicated by the significant coefficient 

estimate on the 
G dummy variable.  In particular, we observe that the standard deviation of entry 

decisions is significantly larger in the static G-treatment where we elicited cut-off strategies than in the C-

treatment where actions were chosen.  In the G treatment unlike the C treatment, the Y value is not known 

at the time a strategy choice must be submitted and this different timing likely explains the significantly 

higher variance in entry choices (cut-off values) in the G treatment relative to the C treatment.4   

                                                 

 

 

 
4 Heinemann et al. (2004, result 7) also find that the standard deviation of entry decisions is higher in treatments 

with private information as compared with treatments with common information. 
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Table 5: Linear Regression Examining Treatment Effects: 

Coefficient Estimates (Standard Error) 

Variable Entry threshold, 

-a/b 

Standard deviation, 

)3/(b  

Intercept 

           30.16*** 

 (2.18) 

                   7.51*** 

(1.09) 

 
G  

0.87 

(3.52) 

     7.59*** 

(1.79) 

50  
           21.82*** 

(2.38) 

                  -0.72 

 (1.61) 

D  
-1.66 

(3.01) 

                  -1.24 

 (1.29) 

 
DC  

-2.69 

(3.15) 

-1.01 

(1.16) 

50 G
 

2.49 

(3.70) 

                  -0.26 

(3.24) 

 
D 50

 
0.12 

(3.21) 

                  -1.88 

(1.99) 
2R  0.88 0.73 

Statistically significant at the: .01 level, ***; .05 level, **; .10 level, *. 

 

 Finally, we test for differences between the logit-estimated entry thresholds in Table 4 and the 

global game or subgame perfect equilibrium predictions.  Using a simple t-test, we consider whether the 

six independent estimated entry thresholds for the static, F=20 game are statistically different from the 

global game prediction.  For both the C and G treatments, we may reject the null of no difference from the 

global game threshold of 42 (two-sided t-test, p=.00 in the C treatment, p=.00 in the G treatment).  For the 

F=20 dynamic game, we use a one-sided version of the t-test to determine whether the six estimated entry 

thresholds for the dynamic F=20 game with or without delay costs are greater than the subgame perfect 

equilibrium threshold prediction of 21 (it would not be rational for these thresholds to be lower than 21).  

We again find that we can reject the null of no difference  in favor of the alternative that entry thresholds 

are greater than 21 for the dynamic treatment without delay costs (p =.01) or with delay costs (p=.05).  

We conclude that in the F=20 case, entry thresholds in the static game lie below the global game threshold 

while in the dynamic game they lie above the subgame perfect equilibrium prediction, which is consistent 

with our earlier finding of no significant difference in the distribution of entry thresholds between these 

two treatments.   

For the F=50 static game sessions, a t-test indicates that we may also reject the null of no 

difference between the four estimated session-level entry thresholds and the predicted global game 

threshold of 62 for both the C and G treatments (two-sided t-test, p=.01 for the C treatment, p=.03 for the 
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G treatment).  However, for the F=50 dynamic game, a one-sided t-test indicates that we cannot reject the 

null of no difference between the four session level estimated entry thresholds and the subgame perfect 

(and efficient) equilibrium threshold prediction of 51 (one-sided test, p=.79). Given that we earlier found 

no difference in the distribution of entry thresholds between the static C-treatment and the dynamic 

treatment of the F=50 game, it would seem that entry thresholds in the static C-treatment should also not 

differ significantly from the efficient equilibrium threshold of 51 for the dynamic game. Indeed, a t-test 

confirms that we cannot reject the null hypothesis of no difference between the estimated entry thresholds 

in the static C-treatment and a hypothesized entry threshold of 51 (one-sided test, p=.20).5  As noted 

earlier, observed and estimated entry thresholds in the static game where F=50 are a smaller proportion of 

the distance FY *
than are entry thresholds in the static game where F=20. This difference most likely 

reflects the greater likelihood that entry will succeed in the F=50 treatment as compared with the F=20 

treatment, as in the F=20 case, more subjects must choose entry on average for entry to yield a non-zero 

payoff than in the F=50 case.   

Summarizing, these last findings with regard to our equilibrium predictions we have:   

 

Finding 8:   Estimated entry thresholds in both the F=20 and F=50 static game treatments are 

significantly below the global game predictions. A comparison of the distribution of entry thresholds 

between static-C game and dynamic game treatments with the same F value reveal no significant 

differences.  In the F=50 treatment, the efficient strategy of entering if Y>F and not entering otherwise 

can be used to characterize behavior in both the static-C and dynamic game treatments. 

 

4.4  Distribution of entry frequencies 

 

[Figures 1a-1d here.] 

 

In addition to considering whether there are differences in estimated or inferred entry thresholds for Y 

between treatments, it is also of interest to examine whether the distribution of entry frequencies (over all 

Y numbers) differs between the static and dynamic treatments.  Figures 1a-1d show the mean entry 

                                                 

 

 

 
5 We can reject the null of no difference between the estimated entry thresholds in the static-G treatment and a 

hypothesized entry threshold of 51 in favor of the alternative that the static G-treatment thresholds are greater than 

51 (one-sided test, p=.04). However, the timing of information concerning the Y-value in the G treatment is 

different from that in the static-C and dynamic game treatments, so the more natural comparison to make (as in the 

text above) is between the static-C and dynamic treatments with the same value of F.  
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frequencies in all static and dynamic sessions where F=20 disaggregated by bins of Y numbers (we use 

the same bins as in the experiment to determine the number of entrants needed for success). Specifically 

for each bin we report the mean of session-level averages for each Y-bin along with associated standard 

errors, indicated by the error bars in these figures, which provide an indication of the precision of these 

means across sessions.  Figure 1a compares mean entry frequencies from the six static game sessions with 

those from the twelve dynamic game sessions (both with and without delay costs) for the F=20 game. T-

tests confirm that whenever the error bars in these figures do not overlap, which occurs in 5 of the 10 bins 

of Figure 1a, we can reject the null hypothesis of no difference in favor of the alternative that entry 

frequencies are statistically higher in the dynamic treatment (one-sided test p<.10 in all such instances).  

However, in 4 of the 5 bins where the entry frequencies in the dynamic game are higher than in the static 

game (the last four bins involving Y numbers between 54-90), the differences in entry frequencies, while 

statistically significant are not economically important. For instance, in the 54-59 bin, the mean entry 

frequency in the static sessions is 96.5% versus 99.9% in the dynamic sessions; both frequencies 

guaranteed that entry is successful in this bin.  

Figures 1b-1d provide comparisons of mean entry frequencies across bins between two of the three 

different treatments of the F=20 game. Once we strip out the dynamic games with delay costs, we see in 

Figure 1b that there is little difference in entry frequencies by bin between the six static and the six 

dynamic game without delay cost sessions (as illustrated in Figure 1b), except again for the last four bins, 

where entry frequencies are slightly higher in the dynamic treatment. 

 

[Figure 2 here] 

The dynamic game with delay costs does lead to significant increases in entry frequencies across 

nearly all bins by comparison with either the static or the dynamic game without delay costs (see Figures 

1c-1d).   Figure 2 shows the mean frequency of entry in static and dynamic sessions where F=50 

disaggregated by bin.  Here, t-tests indicate  significantly higher entry frequencies in the dynamic game 

sessions as compared with the static game sessions in the last five bins, where Y differences in entry 

frequencies by bin between the four static and the four dynamic game without delay cost sessions of the 

F=50 treatment.   Summarizing, we have: 

 

Finding 9:  There are differences in the distribution of entry frequencies over Y number bins between 

static and dynamic entry games with the same F-value.  Specifically entry game frequencies are higher in 

dynamic games where there are delay costs or for large values of Y (greater than 54). Otherwise, there are 

few differences in entry frequencies by Y-bins 
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Many differences, while statistically significant, are not economically important, e.g., because 

they don‘t affect whether or not entry is successful. As we have seen, the small but statistically significant 

differences reported in Finding 9 do not lead to significant differences in the estimated entry threshold (Y-

value) across dynamic and static game treatments with the same F value.   

 

4.5 Consistency of cut-point strategies with action choices in the static game 

 

We next restrict attention to our static game treatment where we used both the action choice method 

(treatment C) and the strategy method (treatment G). We have the following finding: 

 

Finding 10: Individual‘s chosen cut-point strategies are a poor predictor of their actions when the payoff 

relevant state variable, Y, lies between F and the global game equilibrium threshold.  

 

 For each subject in the static-G treatment, we calculated the mean of that subjects‘ entry cut-

point in the last five games played, as subjects should have had sufficient experience by then to have 

settled on an entry threshold that seemed reasonable to them.  Using each subject‘s mean cut-off from the 

static-G treatment, we then calculated the sequence of actions implied by that strategy in the static-C 

treatment using the same sequence of Y values subjects faced in the C-treatment part of the session. We 

use these predicted actions to calculate a consistency metric for each subject, where a value of 1 

corresponds to perfect consistency between a subject‘s mean strategy threshold (as determined by end 

behavior in the G-treatment) and his action choices in all rounds of the C-treatment and a value of 0 

corresponds to complete inconsistency.   

Figures 3a-3b provide weighted average values of the consistency measure over all subjects who 

participated in the six static F=20 and the four static F=50 treatments. These averages are again 

disaggregated according to the 10 non-overlapping ―bin‖ values for the Y-number used in the experiment. 

 

[Figures 3a-3b here.] 

 

Notice that for Y-values that lie either below F or above the hypothesized global game thresholds (42 

when F=20 and 62 when F=50), the average consistency metric is generally very high, often close to 

100%.  However, there is a sharp fall-off in this consistency measure in the neighborhood of the 

empirically observed thresholds, bins 24-29, 30-35 and 36-41 in the F=20 sessions and bins 48-53 and 54-

59 in the F=50 sessions.  In the F=20 case, when Y is between 30-35, subjects‘ strategies from the G-

treatment part of the session predict their actions in the C treatment part of the session only 55% of the 



 24 

time.  This finding leads us to conclude that there is only mixed support for an important implication of 

the global game solution—that individuals approach the play of a sequence of coordination games, which 

differ only in a payoff-relevant variable, by adopting a unique threshold strategy.  

This finding is not inconsistent with the finding that inferred or estimated entry thresholds in the 

F=20 static-C and static-G game treatments are not significantly different from one another as the 

variance of entry thresholds is significantly greater in the G-treatment as compared with the C-treatment 

(see, e.g., Table 4). And indeed, we earlier reported (Finding 5) that both the mean entry threshold and its 

variance in the F=50 static-G treatment were significantly higher than in the corresponding F=50 static-C 

treatment.  The observation that subjects are varying their cut-off thresholds to a greater degree than the 

variation in their entry choices is what appears to account for the inconsistencies observed in Figure 2. 

Recall also that we varied the order of the static-C and static-G treatments in our within- subjects 

design; in one half of the sessions for each value of F, the static-C treatment was played first followed by 

the static-G treatment, while in the remaining half of those sessions, the reverse order was followed.  

Restricting attention to these 10 static game sessions, we find no evidence for any order effect on the 

consistency metric. Specifically we calculated the individual consistency metric described above for each 

subject using their average cut-off from the last five rounds of the G treatment to predict their actions in 

all 30 rounds played of the C treatment (that is, using all 30 values of Y they actually faced in the C 

treatment). We ran a regression of these 200 individual observations for the consistency metric on a 

constant and two dummies: 1GC  if the treatment order was 30 rounds of the static-G treatment 

(strategy method) followed by 30 rounds of the static-C treatment, 0 for the reverse order, and 150   if 

F was 50, 0 otherwise.  The OLS regression results, with standard errors (in parentheses) that have been 

corrected for clustering of the consistency metric within sessions using a Huber-White sandwich 

estimator, are as follows:  

Consistency  =  0.878  –  0.028
GC  +  0.067

50             R2= 0.10 

                                       (0.015)   (0.027)          (0.026) 

 

The regression results reveal that the coefficient on the order dummy,
GC , is not significantly 

different from zero, suggesting that the static game treatment order did not affect the consistency between 

subjects‘ elicited thresholds (G treatment) and their action choices (C treatment).  The absence of an order 

effect is not only indicative of the neutrality of our within-subject designs.  It further suggests that there 
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may be a consistency between subjects‘ action choices and the use of threshold strategies as Heinemann 

et al. (2004) asserted in their study.6   

The regression above also reveals that there is a statistically significant increase in the 

consistency metric in the F=50 treatment as compared with the F=20 treatment.  We observe that 

consistency over all values of Y averages about 88% when F=20 and rises to an average of around 94% 

when F=50.  While these average consistency levels may seem high, note that they are calculated for all 

values of Y[10, 90].  We know from Finding 9 (and Figures 2a-2b) that most of variance in the 

consistency metric arises when the Y number lies in the critically important region between F and the 

global game equilibrium threshold, Y*.  As the region Y*-F is smaller when F=50 than when F=20, this 

difference is what accounts for the greater consistency between elicited thresholds and action choices in 

the F=50 as compared with the F=20 treatment.  

 

Finding 11:   The overall consistency (all values of Y) between elicited cut-point strategies and action 

choices averages 88% in the F=20 treatment and 94% in the F=50 treatment.  The consistency measure is 

unaffected by whether strategies were elicited in the first or second half of static game sessions. 

 

4.6 Timing of entry decisions in the dynamic game 

 

Finally, we focus attention on the dynamic game treatment and examine the timing of entry decisions. We 

have the following finding: 

 

Finding 12:  There is clear evidence against backward induction. 

 

For the dynamic game, the subgame perfect (and efficient) equilibrium in which an individual 

enters whenever the number who have already entered exceeds a specific threshold predicts that, via 

backward induction, entry should occur immediately, in the first of the 10 rounds of each dynamic game 

for any value of FY  .  However, as Figures 4a-4b reveal, this prediction finds only conditional 

support.  Each figure is constructed using pooled data from all dynamic game sessions of the same 

treatment: Figure 4a shows data from all F=20 and no delay costs and all F=20 and delay costs sessions; 

Figure 5b shows data from all F=50 no delay cost sessions. Using the 10 bins for Y values (indicated by 

                                                 

 

 

 
6 However, as we observed in Finding 10, the consistency between strategies and action choices breaks down in a 

subset of the action space (Y-numbers) where there is no dominant strategy. 



 26 

the vertical lines) these figures show the mean number of the 10 subjects who choose to enter at each of 

the 10 rounds of the dynamic game (indicated by tick marks within each Y-bin).7      

 

[Figures 4a-4b here] 

 

These figures reveal that decisions to enter or not enter are, on average, immediate (occur in 

round 1) only when Y is below the value of F or well above the global game threshold of 42 in the F=20 

case and 62 in the F=50 case.  For intermediate values of Y, there is clear evidence that subjects are 

conditioning their entry decisions on the number of subjects who have previously entered, that is, some 

subjects are playing a ―wait-and-see‖ strategy that is inconsistent with the subgame perfect equilibrium 

prediction.  Consider for instance, the Y number bin 30-35 in Figure 4a for the F=20 dynamic game. 

When there are no delay costs, an average of just 3 of 10 players enter immediately in round 1 (marked by 

the vertical line in the Figure). With delay costs a higher average, 6 of 10 players enter immediately in 

round 1. However, by the 10th and final round, an average of just  6.8 of 10 players have entered in the no 

delay cost treatment while an average of 7.7 of 10 players have entered in the delay cost treatment. As 

Figure 4a indicates, for Y values in this 30-35 bin, 8 players must choose to enter for entry to yield a 

positive payoff.  Thus, on average, entry is not successful in this bin regardless of whether or not there are 

delay costs.8  More importantly, the lack of immediate entry in round 1 by all players in this bin and other 

instances where Y>F is clear evidence against the backward induction logic of the subgame perfect 

equilibrium prediction.   

The incidence of ―wait-and-see‖ before entering behavior is less pronounced in the dynamic F=50 

game, as it is less risky for individual subjects to immediately enter in the first round of such games when 

Y>50; in such cases, at most 5 of the 10 group members must choose to enter for an entry decision to 

yield the larger, Y payoff.  However, entry hesitation nevertheless persists in the F=50 treatment.  For 

example, consider the Y number bin 54-59 in Figure 4b: an average of just 6.4 of 10 players choose to 

enter in the first round of games with those Y values; in that bin, only 4 out of the 10 players must choose 

to enter for entry to succeed.  The average number of entrants in the 54-59 bin does climb to 9.9 of 10, but 

only by the 10th and final round of the game.  

                                                 

 

 

 
7 The 10th tick for each bin, representing the 10th round should not be connected to first tick of the next bin 

representing the 1st round ; the connection is unavoidable using our graphical software. 
8  While the average number of entrants by round 10 is less than 8, this masks some variance across games/sessions; 

in some of these games, entry is successful as more than 8 have entered while in others entry is unsuccessful as less 

than 8 have entered; on average, entry is unsuccessful in this bin as Figure 4a indicates. 
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Finally we specifically address the issue of whether delay costs affect the timing of entry 

decisions relative to their absence.  

 

Finding 13:  The addition of a small delay cost serves to hasten the period in which individuals choose to 

enter in the dynamic game. 

[Figure 5 here] 

 

Here we focus on the six sessions of the dynamic treatment with and without delay costs for the 

F=20 case as this is the only treatment where we have data with and without delay costs. Figure 5 shows 

the mean period of entry among all those choosing entry, by Y-number bins.  We observe that for all bins, 

the mean period of entry is always greater for the dynamic game without delay costs than for the dynamic 

game with delay costs; t-tests confirm the impression from the non-overlapping standard error bars that 

many of these differences are statistically significant. However, the typical difference consists of an 

average of 1 period of delay or less.  Further, while delay do costs hasten the period of entry, we have 

already seen that such costs do not affect the aggregate estimated entry threshold, i.e. the Y number,  that 

characterizes play of the dynamic game when F=20.  Finding 13 thus indicates that subjects were paying 

attention to delay costs and seeking to minimize them whenever their entry threshold was reached.  

  

5   Summary and Concluding Remarks 

 

Games with strategic complementarities give rise to a multiplicity of equilibria.  An important 

class of such games are entry games in which the payoff to a player who ‗enters‘ is a monotonic 

increasing function of the number of other players who enter.  These games have been used to model 

speculative attacks, bank runs, and other situations in which actions by a critical mass can produce a 

regime change.  The theory of global games has been proposed as a model of how people resolve the 

coordination that is inherent in such games.  That theory implies that an individual will play all entry 

games whose payoff functions differ only with respect to the value of a threshold parameter using the 

same cut-point strategy and that in equilibrium all individuals will choose the same strategy.   We test 

these implications by directly eliciting the strategies subjects choose to play in all entry games that vary 

only with respect to the threshold parameter, Y.  We then compare those strategies with the actual action 

choices the same subjects make in a series of entry games in which the value of Y varies from one game 

to another.  We find only mixed support for the theoretical predictions.  In support of the proposed 

refinement, we find that individual actions are generally consistent with the actions that are implied by the 

strategies they chose when asked to choose a cut-point strategy.  Further, the lack of any order effect 
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suggests that individuals are employing a cut-point strategy when selection which action to take in these 

entry games. These strategies and actions chosen are responsive to changes in the payoff to not entering in 

the direction predicted by the theory. However, inconsistent with the theory, there is substantial variance 

among individuals in their elicited cut-point strategies.  Furthermore, the mean of the elicited or estimated 

entry threshold in the static game is significantly below the global game equilibrium strategy and the 

mean of the estimated dynamic entry threshold is above the subgame perfect equilibrium prediction in the 

F=20 case, though not significantly different from it in the F=50 case. 

The theory of global games is a theory of a game played in a static environment.  However, most 

phenomena that are modeled as entry games have an inherently dynamic property in that individuals do 

not have to move simultaneously and when they do act, they may possess information about how close 

the system is to the threshold that would make entry individually profitable.  Theoretically, the 

equilibrium of the dynamic version of the entry game we study is quite different from the equilibrium of 

the global game.  Surprisingly, we find that despite the large, predicted difference in the play of the static 

and dynamic games, the actual pattern of behavior in these different games is statistically 

indistinguishable, even when we consider the case of delay costs in the dynamic game.  This finding 

suggests that the modeling of N-player entry games with strategic complementarities as static, one-shot 

games –ignoring the dynamic element of those interactions -- may not be leaving out empirically 

important determinants of behavior observed in such environments. 
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Appendix: Instructions Used in the Experiment  

 

A.1 Instructions used in static game sessions where F=20 and subjects played 30 rounds of the G 

treatment followed by 30 rounds of the C treatment.  Other static game treatments involve similar 

instructions, or reverse the order of play of the G and C treatments. 

 

Overview 

 

Welcome to this experiment in economic decision-making. Please read these instructions carefully as they 

explain how you earn money from the decisions you make in today‘s session. There is no talking for the 

duration of the session. If you have a question, please raise your hand and your question will be answered 

in private. 

 

There are 20 participants in today‘s session. The rules are the same for all participants. In the first phase 

of this experiment you will participate in 30 rounds of decision-making.  At the beginning of each round 

you will be assigned randomly to one of two groups of 10 participants, Group 1 or Group 2.  The group to 

which you are assigned for that round appears on your screen.  In each round you will be asked to enter a 

number.  After a round is over, all participants will be randomly divided between these two groups again.  

While you may be assigned to the same group number (1 or 2) more than once in succession, the 

composition of participants in the group to which you are assigned will differ from round to round. 

 

The Decision You Face Each Round 

 

Prior to the start of each round, an integer number labeled the ―Y number‖ will be randomly drawn from 

the interval 10 to 90 inclusive.  All numbers in this interval have the same probability of being drawn. 

The Y number drawn in each round is the same for all participants. The Y number will not be revealed to 

you or any other participant in your group until the end of the round, after you have made your decision. 

 

In each round you will be asked to specify a cut-off value, corresponding to an integer number in the 

interval between 10 and 90 inclusive.  Simply enter your number in this range in the box on your screen. 

When you are satisfied with your choice click the submit button.  

 

If the Y number drawn is less than your cut-off number, your choice for the round will be action A. If the 

Y number drawn is greater than or equal to your cut-off number, your choice for the round will be action 

B. These choices will be made for you automatically by the computer program, given your cut-off value.   

 

Example 1.  You specify a cut-off number of 12. The Y number is 32. Since the Y number is greater than 

or equal to your cut-off number, the action chosen for you is action B. 

 

Example 2.  You specify a cut-off number of 74. The Y number is 71. Since the Y number is less than 

your cut-off number, the action chosen for you is action A.  

 

Your cut-off value implies a certain choice of A or B each round. 

 

If your choice is A then you earn 20 points for the round.   

 

If your choice is B, then the number of points you earn depends on 1) how many other people in your 

group also choose B and 2) the value of the Y number.  Generally, the more people in your group who 

choose B and the larger the Y number, the greater will be your points from choosing B. Specifically if the 

number of participants in your group who choose B is at least 10×(80-Y)/60, rounded to the next integer, 

or greater, then each of those choosing B earns Y points. If the number of participants in your group who 
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choose B is less than 10×(80-Y)/60,  then each of those choosing B earns 0 points. For your convenience, 

we provide a table below showing, for different values of Y, the minimum number of players who must 

choose B for B to yield Y points. 

 

After all cut-off decisions have been made, the round is over and the results of the round will appear on 

your computer screen. The value of Y for the round will be revealed to you and you will be reminded of 

your cut-off number. The choice that was made for you (A or B) based on your cut-off value is also 

revealed, as is the number of points you earned from your choice, the total number of players in your 

group of 10 who chose action B in the last round and the payoff in points earned by the members of your 

group who chose action B. The payoff to choosing action A is always 20 points. Please record this 

information on your record sheet under the appropriate headings. When you have completed this task, 

click the OK button to continue to the next decision round. Your history of play will also appear at the 

bottom of your decision screen for ready reference.  

 

Earnings 

 

Each point earned is equal to 1/2 cent, so 10 points = 5 cents, etc.  The more points you earn the greater is 

your dollar payoff. You will be paid your earnings from all rounds played today in cash at the end of the 

session.   

 

Table 

 

Recall that if the number of participants who chose B is at least 10×(80-Y)/60, then each player who 

chose B earns Y>0 points. Otherwise, each player who chose B earns 0 points.  The table below presents 

this formula in tabular form for your convenience. 

 

Y is a number drawn between 

10 and 90 inclusive. 

If the Y number drawn is in 

the interval: 

…then at least this number of 

the 10 participants must 

choose B in order for each of 

them to get Y>0 points. 

10 to 23 10 

24 to 29 9 

30 to 35  8 

36 to 41 7 

42 to 47 6 

48 to 53 5 

54 to 59 4 

60 to 65 3 

66 to 71 2 

72 to 90 1 

 

Some Examples   

 

The numbers in these examples are merely illustrative. Actual numbers in the session may be quite 

different. 

 

Example 3.  Suppose Y turns out to be 64. Four of the 10 participants in your group had cut-off values 

greater than 64 so their choice was A, earning 20 points each. The other 6 had cut-off values less than or 

equal to 64 so their choice was B. The payoff to those choosing B depends on whether the total number of 

participants choosing B is greater than or equal to 10×(80-Y)/60.  Since Y=64, the critical number is 
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10×(80-64)/60 = 2.67. Rounded up to the next integer, the critical number is 3. Since 6 players chose B, 

and 6 is greater or equal to 3, each player whose cut-off value caused them to choose B earns Y=64 points 

for the round. Alternatively, one could use the table above to come up with the same answer.  With Y=64, 

the table reveals that the minimum number of players needed to choose action B for a B choice to yield 

Y=64 points is 3. Since 6 players choose B, each of those choosing B earns Y=64 points. 

 

Example 4.  Suppose Y turns out to be 31.  Six of the 10 participants in your group had cut-off values 

greater than 31 so their choice was A, earning 20 points each. The other 4 had cut-off values less than or 

equal to 31 so their chose was B.  With Y=31, the critical number, 10×(80-31)/60 = 8.17 rounded to the 

next integer is 8.  Since just 4 players chose B, each player who chose B earns 0 points for the round. 

 

Practice Questions 

 

We now pause to ask you to answer two practice questions. We will review the answers shortly. 

 

Question 1.  You specify a cut-off of 52. Y is revealed to be 64. A total of 3 players chose B. What is your 

action choice and how many points did you earn?   

 

Question 2. You specify a cut-off of 38. Y is revealed to be 26. A total of 7 players chose B. What is your 

action choice and how many points did you earn? 

 

Questions  

 

Now is the time for questions about the rules or how you make decisions. If you have a question, please 

raise your hand and we will attempt to answer your question in private. 

_____________________________________________________________________________________ 

 

Continuation Instructions (Read following the first 30 rounds of play) 

 

You will play 30 more rounds in which you will have to make decisions. However, the rules as to how 

you make decisions are different from the rules used in the first 30 rounds. As in the first 30 rounds, after 

each round you will be randomly assigned to either Group 1 or to Group 2.  The following rules apply to 

all participants. 

 

The Decision You Face Each Round 

 

Prior to the start of each round, an integer number labeled the ―Y number‖ will be randomly drawn from 

the interval 10 to 90 inclusive.  All numbers in this interval have the same probability of being drawn. 

The Y number drawn in each round is the same for all participants. Unlike the first 30 rounds however, 

the Y number will be revealed to you and all other participants in your group before you have to make 

your decision. 

 

After the Y number is revealed, you will have to make a decision between choice A or choice B.  Click on 

the radio button next to your choice. You can change your mind any time prior to clicking the red Submit 

button. 

 

Notice that you no longer specify a cut-off number. You directly choose either action A or action B after 

observing the Y number for the round. The number of points you earn from action A is the same as 

before, 20 points. Similarly, the number of points you earn from action B is determined in the same 

manner as before. Specifically, if at least 10×(80-Y)/60 participants (rounded to the nearest integer) 

choose B, then all those choosing B earn Y points; otherwise they earn 0 points. The table given in the 
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earlier set of instructions remains useful to you in figuring out your points from a B choice, given the 

value of the Y number announced at the start of each round.   

 

After all decisions have been made, the round is over and the results of the round appear on your 

computer screen. You will be reminded of the Y number for the round and your choice for the round, (A 

or B). You will also see the number of points you earned from your choice, the total number of players in 

your group of 10 who chose action B in the last round and the points earned by the members of your 

group who chose action B. (The payoff to choosing action A is always 20 points and so it is not 

displayed). As before, please record the information appearing on your screen on your record sheet under 

the appropriate headings. When you have completed this task, click the OK button to continue to the next 

decision round. Your history of play will appear at the bottom of your decision screen for ready reference. 

Before the next round begins you will be randomly assigned to one of the two groups.   

 

Earnings 

 

As in the first 30 rounds, in these last 30 rounds, each point is worth 1/2 cent. Following the completion 

of these last 30 rounds, the session will be over. Your point total from all 60 rounds will be converted into 

dollars and you will be paid your earnings in cash and in private. 

 

Some Examples   

 

The numbers in these examples are merely illustrative. Actual numbers in the session may be quite 

different. 

 

Example 1.  Suppose Y=40 and you chose B.  5 of the 10 participants chose A each earning 20 points. 

The other 5, including you, chose B. With Y=40 the critical number of players needed to earn Y points 

from playing B, 10×(80-40)/60 = 6.67, Rounded up to the next integer, the critical number is 7. Since 

only 5 players chose B, you and each of these players choosing B earns 0 points for the round. 

 

Example 2.  Suppose Y=68 and you chose A.  The 4 members of your group, including yourself, who 

chose A earn 20 points each. The other 6 players chose B. With Y=68, the critical number of players 

needed to earn a Y points from playing B, 10×(80-68)/60 = 2. Since 6 players chose B, each of those 

players earns 68 points for the round. 

 

Practice Questions 

 

We now pause to ask you to answer two practice questions. We will review the answers shortly. 

 

Question 1. The Y number is 45.  8 players choose A and 2 choose B. How many points are earned by 

those choosing A?   How many points are earned by those choosing B? 

 

Question 2.  The Y number is 74.  3 players choose A and 7 choose B. How many points are earned by 

those choosing A?  How many points are earned by those choosing B? 

 

Questions  

 

Now is the time for questions about the rules or how you make decisions. If you have a question, please 

raise your hand and we will attempt to answer your question in private. 
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A.2  Instructions used in dynamic game sessions where F=20 (Instructions for the F=50 case are 

identical except that the payment for action A is 50 rather than 20). 

 

 Overview 

 

Welcome to this experiment in economic decision-making. Please read these instructions carefully as they 

explain how you earn money from the decisions you make in today‘s session. There is no talking for the 

duration of the session. If you have a question, please raise your hand and your question will be answered 

in private. 

 

There are 20 participants in today‘s session. The rules are the same for all participants. You will 

participate in 30 sequences of decision-making.  At the beginning of each sequence you will be assigned 

randomly to one of two groups of 10 participants, Group 1 or Group 2.  The group to which you are 

assigned for that sequence appears on your screen. Each sequence consists of 10 rounds.  At the end of 

each sequence you will be randomly assigned again to one of the two groups. 

 

The Decision You Face Each Sequence 

 

At the beginning of a sequence an integer number labeled the ―Y number‖ will be randomly drawn from 

the interval 10 to 90 inclusive.  All numbers in this interval have the same probability of being drawn. 

The Y number drawn is the same for all participants and will be shown on your computer screen.  This 

number remains unchanged for all 10 rounds of the sequence. 

 

In the first round of a sequence you will be asked to choose between one of two choices, labeled ―A‖ or 

―B‖.  You make your choice by clicking on the radio button next to your choice. You then click the red 

‗submit‘ button.  At the end of this first round (and at the end of the subsequent 9 rounds) of the sequence, 

you will be reminded of your choice and you will be informed as to how many people in your group of 10 

have chosen ―B‖ so far in that sequence.  The next round of the sequence is then played.  If you chose ―B‖ 

in a previous round then the computer automatically chooses ―B‖ for you in this and every remaining 

round of the sequence.  You must simply click the red ―OK‖ button to advance the program to the next 

round in the sequence.  However, if you have not chosen ―B‖ in a previous round in the sequence – you 

have instead chosen A in all prior rounds of the sequence – then you must decide in the current round 

whether to repeat your choice of ―A‖ or to choose ―B‖ instead.  That is, a choice of ―B‖ in any round in 

the sequence ‗locks‘ you into choosing B for duration of that sequence.  But a choice of ―A‖ preserves 

your option to choose either ―A‖ or ―B‖ in a future round of the sequence, or to completely avoid making 

a B choice.   

 

In the first round of each new 10-round sequence, you are again free to choose A or B, regardless of your 

action choices in any previous sequence. 

 

After all 10 rounds of a sequence have been played; your point earnings for that sequence will be 

calculated as follows:   

 

 If you chose ―A‖ in all 10 rounds you earn 20 points for that sequence. 

 

If you chose ―B‖ in any round, then your earnings for the sequence depend upon the Y number 

drawn for that sequence and on the total number of people in your group of 10 who chose ―B‖ in 

the sequence. Generally, the more people in your group who choose B and the larger the Y 

number, the greater will be your points from choosing B.  Specifically if the number of 

participants in your group who choose B is at least  10×(80-Y)/60, rounded to the next integer, or 

greater, then each of those choosing B earns Y points.  If the number of participants in your group 
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who choose B is less than 10× (80-Y)/60, then each of those choosing B earns 0 points.  For your 

convenience, we provide a table below showing, for different values of Y, the minimum number 

of participants who must choose B for B to yield Y points. 

 

At the end of a sequence the results for that sequence appear on your computer screen.  Displayed will be 

the Y number for the sequence, your final choice for the sequence, (A or B), the number of points you 

earned from your choice, the total number of participants in your group of 10 who chose action B and the 

payoff earned by the members of your group who chose action B. (The payoff to always choosing action 

A is fixed at 20 points and so it is not displayed). Please record the information appearing on your screen 

on your record sheet under the appropriate headings. When you have completed this task, click the OK 

button to continue on to the next 10-round sequence. Your history of play will appear at the bottom of 

your decision screen for ready reference.  After a sequence is over, all participants will be randomly 

divided between these two groups again.  While you may be assigned to the same group number (1 or 2) 

more than once in succession, the composition of participants in the group to which you are assigned will 

differ from sequence to sequence. 

 

Earnings 

 

Each point earned is equal to 1 cent. You will be paid your earnings from all rounds played today in cash 

at the end of the session.   

 

Table 

 

Recall that if the number of participants in your group who chose B during a sequence  is at least 10×(80-

Y)/60, then each participant who chose B in that sequence earns Y>0 points. Otherwise, each participant 

who chose B during a sequence earns 0 points.  The table below presents this formula in tabular form for 

your convenience. 

 

Y is a number drawn between 

10 and 90 inclusive. 

If the Y number drawn is in 

the interval: 

…then at least this number of 

the 10 participants must 

choose B in order for each of 

them to get Y>0 points. 

10 to 23 10 

24 to 29 9 

30 to 35  8 

36 to 41 7 

42 to 47 6 

48 to 53 5 

54 to 59 4 

60 to 65 3 

66 to 71 2 

72 to 90 1 

 

 

 

Some Examples   

 

The numbers in these examples are merely illustrative. Actual numbers in the session may be quite 

different. 
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Example 1.  Suppose Y turns out to be 64. Following the 10th round of the sequence, 4 of the 10 

participants‘ final choice was A, earning them 20 points each and the other 6 participants‘ final choice 

was B.  The payoff to those choosing B depends on whether the total number of participants choosing B 

is greater than or equal to 10×(80-Y)/60.  Since Y=64, the critical number is 10× (80-64)/60 = 2.67. 

Rounded up to the next integer, the critical number is 3. Since 6 participants chose B, and 6 is greater or 

equal to 3, each participant choosing B earns Y=64 points for the round. Alternatively, one could use the 

table above to come up with the same answer.  With Y=64, the table reveals that the minimum number of 

participants needed to choose action B for a B choice to yield Y=64 points is 3.  Since 6 participants 

choose B, each of those choosing B earns Y=64 points. 

 

Example 2.  Suppose Y turns out to be 31. Following the 10th round of the sequence, 6 of the 10 

participants‘ final choice is A, earning them 20 points each and the other 4 participants‘ final choice is B.  

With Y=31, the critical number, 10× (80-31)/60 = 8.17 rounded to the next integer is 8.  Since just 4 

participants choice was B, each participant who chose B earns 0 points for the round. 

 

Practice Questions 

 

We now pause to ask you to answer two practice questions. We will review the answers shortly. 

 

Question 1.  The Y number is 45.  Following the 10th round of the sequence, 8 participants have chosen A 

and 2 have chosen B. How many points are earned by those choosing A?  How many points are earned by 

those choosing B? 

 

Question 2.  The Y number is 74. Following the 10th round of the sequence, 3 participants have chosen A 

and 7 have chosen B. How many points are earned by those choosing A?   How many points are earned 

by those choosing B? 

 

Questions  

 

Now is the time for questions about the rules or how you make decisions. If you have a question, please 

raise your hand and we will attempt to answer your question in private. 
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Figure 1a:  Mean Entry Frequencies by Y Number Bins from 6 Static and 12 Dynamic Game Sessions 

where F=20, with 1 Standard Error Band. 

 

 

 

 
Figure 1b:  Mean Entry Frequencies by Y Number Bins from 6 Static and 6 Dynamic Game Sessions 

without Delay Costs where F=20, with 1 Standard Error Band. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10-23 24-29 30-35 36-41 42-47 48-53 54-59 60-65 66-71 72-90

%

E

n

t

e

r

Y number bins

Static Dynamc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10-23 24-29 30-35 36-41 42-47 48-53 54-59 60-65 66-71 72-90

%

E

n

t

e

r

Y number bins

Static Dynamic, No Delay Costs



 38 

 
Figure 1c:  Mean Entry Frequencies by Y Number Bins from 6 Static and 6 Dynamic Game Sessions with 

Delay Costs where F=20, with 1 Standard Error Band. 

 

 

 

 

 
Figure 1d:  Mean Entry Frequencies by Y Number Bins from 6 Dynamic Game Sessions without Delay 

Costs and 6 Dynamic Game Sessions with Delay Costs where F=20, with 1 Standard Error Band. 
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Figure 2:  Mean Entry Frequencies by Y Number Bins from 4 Static and 4 Dynamic Game Sessions 

where F=50, with 1 Standard Error Band. 
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Figure 3a: Average Accuracy of Predicted Entry Decisions Using Elicited Cut-Points:  

Pooled Data from Four Static Game Sessions where F=20 

 

 
Figure 3b:  Average Accuracy of Predicted Entry Decisions Using Elicited Cut-Points:  

Pooled Data from Four Static Game Sessions where F=50 
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Figure 4a:  Average Number of Entrants in Rounds 1-10 of All Dynamic F=20 Game Sessions without 

Delay Costs or With Delay Costs, Grouped According to Y-bins. The threshold number of entrants 

needed for entry to yield a positive payoff is also indicated.  

 

 
Figure 4b:  Average Number of Entrants in Rounds 1-10 of All Dynamic F=50 Game Sessions (No Delay 

Costs) Grouped According to Y-bins.  The threshold number of entrants needed for entry to yield a 

positive payoff is also indicated. 
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Figure 5: Mean Period of Entry in the 6 Dynamic Game Sessions Without Delay Costs and in the 6 

Dynamic Game Sessions With Delay Costs where F=20 
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