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Abstract In both consumer purchasing and industrial procurement, combina-
torial interdependencies among the items to be purchased are commonplace. E-
commerce compounds the problem by providing more opportunities for switching
suppliers at low costs, but also potentially eases the problem by enabling auto-
mated market decision-making systems, commonly referred to as trading agents, to
make purchasing decisions in an integrated manner across markets. We are investi-
gating a new approach to deal with the combinatorial interdependency challenges
for online markets. This approach relies on existing commercial online market in-
stitutions such as posted-offer markets and various online auctions that sell single
items. It uses trading agents to coordinate a buyer’s purchasing and bidding ac-
tivities across multiple online markets simultaneously to achieve the best overall
procurement effectiveness. This paper presents two sets of models related to this
approach. The first set of models formalizes optimal purchasing decisions across
posted-offer markets with fixed transaction costs. The second set of models is con-
cerned with the coordination of bidding activities across multiple online auctions.
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1 Introduction

Industrial procurement constitutes a major component of today’s e-commerce and
the national economy in general (Woods & Marien 2000). In most industrial pro-
curement settings, a buyer needs to purchase a bundle of complementary goods
as opposed to individual, unrelated goods (McAfee, McMillian & Whinston 1989,
Gaeth, Leven, Chakrabourty & Levin 1990). For instance, to assemble a car, an
automobile manufacturer needs to first purchase all parts required by the corre-
sponding engineering design. Similarly, a software system integrator needs to ac-
quire licenses of all component software packages before the system integration
efforts can be initiated.

Furthermore, many industrial procurement tasks involve complex combinato-
rial interdependencies among the items to be purchased. Such interdependencies
are often a result of the presence of multiple design or operation alternatives. Take
the example of a software system integrator. Suppose this integrator is charged
with the task of developing a customized e-commerce storefront which uses a
database system as the backend data repository. In the pre-development procure-
ment phase, the integrator needs to acquire licenses for a database software and
a matching Web programming environment. If somehow the decision on which
database and Web programming environment should be used is already made, the
procurement or licensing task is then concerned with finding the best deal for the
single, already decided bundle. However, if no such decision is made, the pro-
curement task becomes significantly harder since various choices on database and
Web programming environment as well as the compatibility issues between these
choices have to be considered. As a result, the decision on whether an item (e.g.,
a particular database system) should be purchased depends on not only its own
price, terms of service contracts, etc., but also other potentially relevant items. Two
other widely-cited examples of combinatorial interdependencies are: the value of
owning a take-off time slot at an airport which depends on whether compatible
landing slots can be acquired at other airports (Rassenti, Smith & Bulfin 1982),
and licenses for bands of the broadcast spectrum in different geographical areas
(Milgrom 2000).

Similar bundling and combinatorial interdependency issues are pervasive in
consumer purchasing as well. Often the consumer shops for bundles of comple-
mentary goods. Consider, as examples, a digital camera and compatible memory
cards, or air tickets, hotel reservations, rental car reservations, and (sometimes)
tickets for plays, concerts, and ball games. If choices for these goods exist, then
the consumer has to consider the resulting combinatorial interdependency issues.

Traditionally, industrial procurement has been a labor-intensive process (Hard-
ing 1990). For each item to be purchased, a member of the procurement staff first
identifies potential suppliers from various forms of advertisements, referrals, or
prior interactions. Then the staff member initiates contacts with these suppliers to
learn more about their products or services and solicits price quotes along with
other information such as delivery terms. Procurement or sourcing decisions are
typically made after quotes are received and (sometimes) an ensuing negotiation
process ends.
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The above traditional procurement process often leads to ineffective and costly
procurement decisions, especially when bundling and interdependency consider-
ations play a significant role. First, only a small subset of all potential suppliers
is identified and included in the procurement process because of the high cost
associated with largely manual information search efforts. Second, out of a poten-
tially large number of procurement or sourcing alternatives, only a small portion
are explored due to the inherent cognitive limitation of the human procurement
decision-maker.

The advent of the Web and various e-commerce technologies including e-
procurement promises to revolutionize the way in which business-to-business trans-
actions including procurement are conducted (Hannon 2003). In the emerging
electronic marketplace, access to product and supplier information is efficient and
cost effective due to online catalogs posted by suppliers. A wide range of catalogs
and other related value-added services provided by third-party infomediaries fur-
ther reduce the information search costs associated with procurement. As a result,
information collected on relevant products and suppliers for a given procurement
task is expected to be much more comprehensive than that collected manually.

In addition to information access, the Web provides a common platform to
carry out many other procurement-related business functions including electronic
payment and document and contract management, among others (Laudon & Traver
2002). More significantly, many types of market institutions are directly imple-
mented on the Web and buyers have efficient, simultaneous access to these mar-
kets. Two prominent examples of these online institutions are: posted-offer markets
offered by e-tailers where a seller posts a fixed price for an item and a buyer either
takes it (buy the item) or leaves it (not buy the item), and English auctions where
an item is sold through an ascending-price, real-time auction in which the bidder
with the last (i.e., highest) bid buys the auctioned item at a price equal to his or her
bid.

Despite all these opportunities enabled by e-commerce, there is evidence that
shows that enterprise procurement operations have not yet improved significantly
(Pur 1998, Gonsalves 2003). A key challenge is, in an operational sense, how to
take advantage of (a) the voluminous amount of product and supplier informa-
tion available from the Web, and (b) the multiplicity of online markets selling
the goods to be purchased. Processing such product and supplier information and
making procurement decisions across markets in real time pose serious informa-
tion and cognitive overload problems to the procurement personnel. For instance,
it is almost impossible for a human procurement staff member to actively keep
track of dozens of online auction markets and a typically larger number of on-
line posted-offer markets to make the best procurement decisions. When bundling
and complex combinatorial interdependencies have to be taken into consideration,
procurement information processing and decision-making become even more chal-
lenging.

Recent years have seen the rapid development of automated procurement sys-
tems that aim to meet the above challenges (Zeng & Nissen 2004). As common
in the literature, we call such systems trading software agents, procurement soft-
ware agents or simply agents (Joshi & Singh 1999, Greenwald & Stone 2001). To
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avoid potential confusion concerning terminology, we briefly state our definition
of agent in the context of procurement. Firstly, unlike in mainstream economics or
business literature, we exclusively reserve the use of “agent” to refer to a compu-
tational entity. Secondly, with respect to the intelligent agent and multi-agent sys-
tems literature, we adopt an agent definition in a relatively weak sense (Jennings,
Sycara & Wooldridge 1998). In our context, an agent is simply any automated
strategic decision-making and execution system which satisfies the following set
of conditions (with no reference to the level of decision-making sophistication or
“intelligence”). (1) Agents operate in a networked environment. (2) Agents receive
delegated procurement tasks from their human users. (3) Agents interact with other
agents or human participants directly or indirectly through well-defined online
economic institutions. (4) Agents automate some or all aspects of procurement-
related transactions.

Agents have been demonstrated to have great potential of further reducing
information search efforts and costs associated with various types of process-
oriented transactions (Sycara & Zeng 1996, Nissen 2001). However, many signif-
icant technical issues have yet to be addressed to develop an effective agent-based
e-procurement approach that can fully take advantage of the potentials offered
by the electronic marketplace. One such issue is the lack of adequate modeling
and computational support for dealing with realistic procurement tasks. In other
words, existing agents provide a sound enabling technological infrastructure but
do not yet offer adequate decision-making mechanisms for important procurement
scenarios common in practice.

Research reported in this paper is aimed to fill in this important gap for several
classes of procurement problems involving bundles and combinatorial interdepen-
dencies. We intend to develop analytical models and suggest corresponding com-
putational mechanisms which can in turn be implemented as the core reasoning
module of a sophisticated procurement agent.

There is a large body of literature in economics, operations research, mar-
keting, and information systems (e.g., (Vickrey 1961, Milgrom & Weber 1982,
Cox, Smith & Walker 1988, Beard, R. B. Ekelund, Ford & Saba 2001, Berry
1994)), which contains models and computational methods applicable to procure-
ment problems involving single items sold through different types of market in-
stitutions including posted-offer markets and auctions. Our work, on the other
hand, focuses on challenges arising from bundling and combinatorial interdepen-
dency considerations. Compared with the existing literature on combinatorial in-
terdependencies and related market designs (e.g., (McAfee et al. 1989, Milgrom
2000, Sandholm 2002, Jones & Koehler 2002, Rothkopf 1994)), our work makes
different assumptions regarding the underlying marketplace where procurement
operations are conducted. The existing literature typically assumes that the seller
offers multiple bundles of goods and can design and enforce customized market
exchange rules such as various types of combinatorial auctions through which po-
tential buyers interact and transact. We argue, however, that such customized mar-
kets exist only for highly specialized niche items (e.g., airport slots, electric power
grids, and communication bandwidths). In the foreseeable future, it is unclear how
these market institutions will be accepted in general procurement practice. Thus,
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instead of focusing on mechanism design, we aim to develop models to guide and
coordinate purchasing and bidding activities across multiple existing online mar-
kets that sell single items to satisfy bundled and combinatorial procurement needs.

The rest of the paper is structured as follows. Section 2 presents a set of models
motivated to coordinate purchasing activities across multiple posted-offer markets.
We observe that making optimal purchasing decisions with fixed transaction costs
are NP-hard in the strong sense and suggest using the efficient computational
methods developed in discrete location theory to make these procurement deci-
sions. Section 3 presents models that can be used to coordinate bidding activities
across two online auctions. We focus on two scenarios: (a) two simultaneous first-
price sealed-bid auctions and (b) two simultaneous second-price sealed-bid auc-
tions. For both scenarios, we derive the optimal procurement policies. Section 4
briefly discusses related work and procurement agent implementation issues. We
conclude the paper in Section 5 by summarizing our research results and pointing
out future research directions.

2 Multiple Posted-Offer Markets

In this section, we study procurement in scenarios where the items of interest
are sold through multiple posted-offer markets. Such markets are prevalent in e-
commerce: many manufacturers or service providers sell their products or services
through their own Web sites under a published price schedule; e-tailers also sell an
assortment of products online in a similar manner.

Throughout the paper, we assume that bundling requirements or combinatorial
interdependencies exist among the items to be purchased. Furthermore, we assume
that sellers differ only in one dimension, i.e., price, and ignore their differences in
other areas such as delivery time and terms, and overall reputation. This allows us
to focus on optimization-based formulations with the objective of minimizing the
total cost for the given procurement task.

We start this section by formulating the bundle procurement problem under
multiple posted-offer markets where each seller charges a fixed transaction fee
whenever one or more orders are placed. This model is an abstraction of a com-
mon e-commerce practice: many e-tailers offer flat shipping and handling fees
either regularly (e.g., officedepot.com) or during promotional periods (e.g.,
amazon.com). We then discuss various extensions to the model including how it
can be applied to address combinatorial interdependencies and issues with bundled
offers. We conclude this section by reporting a computational study conducted to
evaluate the economic significance of using the proposed model to make bundle
purchasing decisions based on real-world pricing data.

2.1 Bundle Procurement with Fixed Transaction Costs

We study the following procurement problem. The procurement request is a bun-
dle consisting of n items to be purchased. We denote this bundle by set O =
{1, 2 , ..., n}. A set of m sellers (e.g., e-tailers), denoted by V = {1, 2 , ..., m},
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has been identified as candidate suppliers. Each seller sells at least one of the items
in bundle O. For each item i, seller j publishes selling price Pij . (Without loss of
generality, if a seller does not sell a particular item, we set the corresponding price
to a sufficiently large positive number.) Furthermore, for seller j, if one or more
items are ordered, it charges the buyer a fixed transaction fee denoted by Sj , irre-
spective of the number of items ordered.

The above procurement problem with the objective of minimizing the total
procurement cost (item costs plus applicable fixed transaction fees) can be formu-
lated as an integer program. We first introduce the decision variables xij for i ∈ O
and j ∈ V , all of which are binary. Let xij = 1, if seller j is chosen for item i, and
xij = 0 otherwise. We also introduce a set of auxiliary variables yj for j ∈ V . Let
yj = 1, if seller j is chosen for at least one item, and yj = 0 otherwise. Denote by
M a sufficiently large constant. We now present the integer program.

z1 = min
∑

i∈O

∑

j∈V

Pijxij +
∑

j∈V

Sjyj (1)

subject to:

∑

j∈V

xij = 1 ∀i ∈ O (2)

Myj ≥
∑

i∈O

xij ∀j ∈ V (3)

xij = 0, 1 ∀i ∈ O,∀j ∈ V (4)

yj = 0, 1 ∀j ∈ V (5)

The objective (1) formalizes the goal of minimizing the total procurement cost,
the sum of item purchase costs and the corresponding transaction costs. The con-
straints (2) guarantee that all individual items in bundle O are ordered from some
sellers. The constraints (3) assure that yj = 1 if at least one item is ordered from
seller j using the standard modeling technique for If-Then constraints.

We now state and prove the main result regarding the complexity of solving
the above integer program.

Theorem 1 The problem of finding the minimum cost procurement plans as de-
fined by (1)-(5) is NP-hard in the strong sense.

Proof. The integer program defined by (1)-(5) is equivalent to the mixed integer
program formulation of the uncapacitated facility location (UFL) problem (Mir-
chandani & Francis 1990). The NP-hardness proof for UFL is based on polyno-
mial reduction from the vertex cover problem, a well-known NP-hard problem
((Mirchandani & Francis 1990), Theorem 3.1). ut

Theorem 1 suggests that it is unlikely that a polynomial or even pseudo-polynomial
algorithm exists that can optimally solve the above procurement problem. Practi-
cally, this means that finding an optimal procurement plan is impossible when the
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number of items and the number of potential sellers are modestly large, especially
when procurement decisions have to be made in a relatively short time frame.
Fortunately, there exist several classes of polynomial time heuristic methods de-
veloped in the discrete location theory literature that can be directly brought to
bear upon this computational challenge (Mirchandani & Francis 1990, Vazirani
2001, Jain, Mahdian, Markakis, Saberi & Vazirani 2003). Although these meth-
ods do not guarantee optimal solutions, they are capable of producing high-quality
solutions and some of them have guaranteed error bounds.

Note that if none of the sellers charge fixed transaction costs, i.e., Sj = 0 for
all j ∈ V , the procurement problem defined by (1)-(5) has an obvious polynomial
solution: for each item, buy it from the seller who offers the lowest selling price
for that item. Intuitively, the absence of fixed transaction costs decomposes the
bundle procurement problem into a collection of independent single-item buying
problems which are easy to solve.

2.2 Model Extensions

We now extend the model developed in the previous section to capture procure-
ment decisions in more complex procurement scenarios. In the first scenario, a
buyer needs to buy a bundle of goods. For each constituent item, however, the
buyer now can choose between different brands. These brands are all functionally
equivalent but are sold under different prices from different sellers.

In the second scenario, we consider full-fledged combinatorial interdependen-
cies among the items to be purchased. In this case, the procurement requirements
are not specified as a fixed bundle. Rather, they are given as multiple alternative
bundles which lead to different utilities. The buyer has to find the bundles that
maximize the difference between their utility and purchasing cost.

In the third scenario, we model another common e-commerce pricing practice:
many online posted-offer markets waive the shipping and handling charge if the
size of the order placed exceeds a predetermined threshold. When this threshold is
not met, the buyer needs to pay the fixed per-shipment transaction fee.

In the fourth and last scenario, we are concerned with an emerging trend of
e-commerce practice in which sellers offer bundled goods. The best example of
such practice in the retail setting is amazon.com, which offers book bundles on
the fly to potential customers when they search and browse its online book catalog.

2.2.1 Bundle Procurement with Multiple Brands The notation used to formalize
the bundle procurement problem with multiple brands is based on that used in
Section 2.1. Below we describe the notational differences.

We assume that for item i ∈ O, there is a nonempty set Ai of brands from
which the buyer can choose. We use a new subscript k to indicate these brands. The
decision variables are now xijk indicating whether seller j is chosen for brand k of
item i, and the problem input parameters regarding item prices are Pijk indicating
the price seller j offers on brand k of item i. The problem of minimizing the total
procurement cost with multiple brands can then be formulated as follows.
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z2 = min
∑

i∈O

∑

j∈V

∑

k∈Ai

Pijkxijk +
∑

j∈V

Sjyj (6)

subject to:

∑

j∈V

∑

k∈Ai

xijk = 1 ∀i ∈ O (7)

Myj ≥
∑

i∈O

∑

k∈Ai

xijk ∀j ∈ V (8)

xijk = 0, 1 ∀i ∈ O,∀j ∈ V,∀k ∈ Ai (9)

yj = 0, 1 ∀j ∈ V (10)

The objective (6) indicates the goal of minimizing the total procurement cost,
which is the sum of item purchase costs and applicable fixed transaction costs. The
constraints (7) guarantee that exactly one brand for each individual item in bundle
O is ordered from some seller. The constraints (8) assure that yj = 1 if at least one
item is ordered from seller j.

The integer program defined by (6)-(10) is a generalization of the model from
Section 2.1. Observe that if a seller is chosen to provide for a brand of item i,
this brand has to be the cheapest brand offered by this seller for item i. Therefore,
the above program can be reduced to the one studied in the previous section, thus
making the heuristic methods from discrete location theory applicable.

2.2.2 Procurement with Combinatorial Interdependencies We first formalize the
notion of combinatorial interdependencies. Consider the set of n distinct items that
a buyer is interested in purchasing O = {1, . . . , n}. Denote the power set of O by
2O, consisting of all subsets of O. In general, any combinatorial interdependencies
can be fully captured by a utility function in the form of u : 2O → R+, where R+

represents the set of nonnegative real numbers.
In practice, however, it is difficult to fully specify utility function u due to its

size. The following alternative three-step approach can be taken instead.

Step 1. The (risk-neutral) buyer provides a set F of bundles of potential interest.
For each bundle, the buyer specifies its utility. (Such information con-
stitutes a partial definition of u; we assume that u(·) = 0 for all other
elements of 2O (that is, the elements in set 2O \ F )).

Step 2. For each bundle in F , the buyer applies the models developed in the pre-
vious two sections to identify the lowest procurement cost.

Step 3. The buyer selects the bundle(s) with maximum difference between its util-
ity and its lowest procurement cost.

Note that the efficiency of this enumeration approach largely depends on how
quickly a high-quality procurement plan can be found for a given bundle (as stud-
ied in the previous sections). Using fast heuristics to solve these underlying pro-
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curement problems, we envision that dealing with combinatorial interdependen-
cies does not pose new significant computational challenges. The key issue is how
to conveniently elicit utility function u in practical settings.

2.2.3 Conditional Free Shipping We assume that Seller j waives Sj if the order
amount exceeds Tj . We introduce a set of auxiliary variables wj for j ∈ V . Let
wj = 1 if the order amount with seller j exceeds Tj and wj = 0 otherwise. The
following integer program formalizes the bundle procurement problem under this
type of conditional free shipping.

z3 = min
∑

i∈O

∑

j∈V

Pijxij +
∑

j∈V

Sj(yj − wj) (11)

subject to

∑

j∈V

xij = 1 ∀i ∈ O (12)

Myj ≥
∑

i∈O

xij ∀j ∈ V (13)

M(1 − wj) > Tj −
∑

i∈O

xijPij ∀j ∈ V (14)

xij = 0, 1 ∀i ∈ O,∀j ∈ V (15)

yj = 0, 1 ∀j ∈ V (16)

wj = 0, 1 ∀j ∈ V (17)

The objective (11) formalizes the goal of minimizing the total procurement
cost. When the order amount exceeds threshold Tj , yj −wj = 0, indicating quali-
fied free shipping. The constraints (14) ensure that wj is set to zero if the threshold
Tj is not met. Computationally, the integer program defined by (11)-(17) is signif-
icantly harder to solve than the base model presented in Section 2.1. We are cur-
rently developing and experimenting with various types of computational methods
to solve this problem. The related computational study is beyond the scope of this
paper.

2.2.4 Bundle Offers We assume that Seller j offers a collection of item bundles.
Denote this collection (set) by Bj and its cardinality nj . Individual bundles are
indexed by k = 1, 2 , ..., nj . Selling prices are now associated with bundles as
opposed to single items. We use Pkj to denote the published selling price for the
kth bundle offered by Seller j. We introduce an additional set of parameters aijk

to simplify the notation. Let aijk = 1 if the kth bundle in Bj contains item i, and
aijk = 0 otherwise. The decision variables xkj now have the following interpre-
tation: Let xkj = 1 if the kth bundle in Bj is bought and xkj = 0 otherwise.
The following integer program formalizes the bundle procurement problem with
sellers offering bundled goods.
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z4 = min
∑

j∈V

∑

1≤k≤nj

Pkjxkj +
∑

j∈V

Sjyj (18)

subject to

∑

j∈V

∑

1≤k≤nj

aijkxkj ≥ 1 ∀i ∈ O (19)

Myj ≥
∑

1≤k≤nj

xkj ∀j ∈ V (20)

xkj = 0, 1 ∀j ∈ V, 1 ≤ k ≤ nj (21)

yj = 0, 1 ∀j ∈ V (22)

In this formulation, constraints (19) ensure that each of the items to be pur-
chased is contained in at least one of the purchased bundles. Note that the base
model presented in Section 2.1 is a special case of this integer program defined
by (18)-(22) through limiting each element of Bj (an offered bundle) to a single-
ton set containing only one item. We are currently applying several computational
methods developed in combinatorial auction research to solve this model (de Vries
& Vohra 2003) and will report our computational experience in a future paper.

2.3 A Computational Evaluation

To investigate the extent to which the total procurement costs can be reduced when
following the optimal bundle procurement decisions, we have conducted a compu-
tational study using real-world pricing data retrieved from various e-tailers and on-
line infomediaries. This section summarizes the setup of this computational study
and its main findings.

Two sets of e-commerce data were collected and used in our study. The first
set, collected mainly from bestwebbuys.com on July 31, 2003, contains per-
shipment shipping and handling charges as well as per-item listing prices (in-
cluding per-item shipping and handling charges when applicable) for used books.
These books were selected to cover several major book categories such as business,
biographies, fictions, etc. The second set, retrieved from pricescan.com on
August 9, 2003, contains similar pricing information for a range of computer hard-
ware including keyboards, computer mice, memory modules, among others. The
following table summarizes some key statistics characterizing these two datasets.
In column labels, “AVE” stands for sample mean (average) and “STD” for sample
standard deviation.

Dataset Total # of
items

Total # of
sellers

(AVE, STD) for
# of sellers per
item

(AVE, STD) for
price per item

(AVE, STD) for
per-shipment
cost per seller

Book 2317 8 (2.57, 0.77) (9.07, 3.49) (3.33, 0.26)
Hardware 100 60 (10.60, 3.66) (39.02, 6.67) (7.99, 4.43)
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To demonstrate the impact of adopting the optimal bundle procurement deci-
sions, we use the following common procurement policy as the comparison base:
For each item in the bundle to be purchased, buy it from the seller that offers the
lowest total cost including both the per-item charge and the fixed transaction cost.
Obviously, this simple policy can result in suboptimal decisions because it ignores
the fact that Sj is charged only once even if more than one item are ordered from
seller j. Nevertheless, this policy is intuitive and captures the essence of the strat-
egy used by all existing comparative shopping agents developed mainly for single
item purchasing. We refer to this policy of the myopic, heuristic nature as the
MYO policy and the optimal bundle procurement policy governed by the model
presented in Section 2 as the OPT policy.

We conducted two separate computational experiments using the used book
and computer hardware datasets, respectively, to compare the performance of OPT
against that of MYO for bundle size ranging from 2 to 20. In each experiment, we
first randomly generated 200 bundle requests for each bundle size under study. For
instance, for bundle size 2, each request was a pair of randomly selected items
(without replacement) from all available items. Then for each bundle request, we
computed both MYO and OPT policies and calculated the resulting total procure-
ment costs. In our experiments, the OPT policies were computed using the CPLEX
integer program solver. (It took CPLEX about 4 seconds to solve a problem with
bundle size 20 in our experiments on a Sun Ultra 5 workstation; the time needed
to compute MYO is negligible.) Figures 1(a) and 1(b) summarize the key results
of these experiments.

For books, as shown in Figure 1(a), the buyer can save 6.64% for bundle size
2 when using OPT as opposed to MYO. This number is the average of percentage
savings over the 200 randomly generated 2-book bundle problem instances. As
shown in Figure 1(b), for bundle size 2, the maximum percentage saving achieved
by OPT out of these 200 cases is 40.10%. The general trend for the book dataset
seems to indicate that as the bundle size increases, the percentage saving enabled
by using OPT decreases in both the average and best cases. For instance, with
bundle size 20, the average percentage saving drops to 0.50% with the maximum
being 0.66%, suggesting that the buyer should adopt the MYO policy since OPT
brings almost no value but is much more difficult to compute. The results based on
the hardware dataset, however, exhibit completely different behavior. As illustrated
in Fig. 1, for bundle size 2, the average percentage saving is merely 1.09%. As the
bundle size increases, however, the average percentage saving enabled by using
OPT now increases in general. For bundle size 20, the percentage saving reaches
7.67% (a dollar value of $52.34). It is also interesting to observe from Fig. 2 that
the maximum percentage savings for the hardware dataset do not fluctuate as much
as those for the book dataset as the bundle size increases.

We are currently analyzing the datasets and related experimental results in
depth to account for the above observations. In particular, we are investigating
whether approximation algorithms and competitive analysis techniques (Vazirani
2001, Borodin & El-Yaniv 1998) may provide a useful framework for such an
analysis and help develop a theory that can predict under which situations and to
what extent OPT will (significantly) outperform MYO. Besides these potentially
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interesting further developments, our computational study reveals that significant
savings are possible in realistic bundle procurement settings. Both paired t-test
and Wilcoxon test confirm that the differences between OPT and MYO are statis-
tically significant for all datasets and bundle sizes under study.

3 Multiple Auction Markets

3.1 Motivation and Basic Assumptions

In recent years, online auctions have gained wide acceptance in the electronic
marketplace. Both consumer products and industrial goods are routinely traded
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through online auction houses in large volumes (Hannon 2003). In particular, auc-
tion markets have been rapidly developed in a number of vertical industrial seg-
ments such as auto parts (covisint.com) and chemicals (chemical.net).

Auctions have been extensively studied in the economics and game theory lit-
erature (Klemperer 1999). A subfield of auction theory studies combinatorial inter-
dependencies and product complementarities (Sandholm 2002, Jones & Koehler
2002, Rothkopf 1994). A basic assumption made by most combinatorial auction
work is that there exists a combinatorial auction market through which a seller and
multiple buyers interact. In such an auction, the seller offers a range of product
bundles and buyers or bidders bid for them based on their utility functions and
their knowledge about other bidders.

Combinatorial auctions have many inherent theoretical appeals. In addition,
significant practical lessons concerning auction setup and effectiveness have been
learned through their recent applications in areas such as selling radio spectrum
rights and trading electricity power (Ausubel, Cramton, McAfee & McMillan
1997, Klemperer 1999).

We project, however, that combinatorial auctions will not have immediate im-
pact on consumer purchasing or industrial procurement based on the following ar-
guments. First, from a technological standpoint, developing and managing general-
purpose combinatorial auction markets is significantly harder than it is for auction
markets that sell single items due to the complex trading rules associated with
combinatorial auctions. It is also unclear how well combinatorial auctions will
scale as a market mechanism when the number of goods and good bundles as well
as the number of potential buyers grow, despite recent developments in the com-
putational aspects of combinatorial auctions (Sandholm 2002, Jones & Koehler
2002). Second, individual sellers typically do not offer the wide range of goods
and bundles for sale to satisfy potential buyers’ procurement needs. Third, from
a buyer’s perspective, participating in a combinatorial auction requires significant
computational expertise to make hard bidding decisions (Sandholm 2002).

At the same time, auction markets selling single items have been well devel-
oped and offer potentially substantial savings for buyers. In effect, buying single,
independent items from various auction markets is becoming a standard practice in
industrial procurement. What is lacking is theoretically sound guidelines and rules
that can be used to coordinate bidding activities across these multiple auction mar-
kets to satisfy procurement requirements with combinatorial interdependencies.

This section presents models developed to study these across-market coordi-
nation issues in two specific auction settings. For simplicity, in both settings, we
assume that the buyer is interested in two items. Furthermore, we assume that there
exists a simple form of interdependency among these two items: some extra pos-
itive utility is generated when both items are acquired (in addition to the sum of
their individual utilities). In the first setting, each of the items is sold through an in-
dependently run first-price sealed-bid auction in which the bidder with the highest
bid buys the auctioned item at a price equal to his or her bid. In the second setting,
each item is sold through a second-price sealed-bid auction in which the bidder
with the highest bid buys the auctioned item at a price equal to the second-highest
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bid. We develop below models that prescribe how a risk-neutral procurement agent
should bid on these two auctions to maximize its expected utility.

3.2 Bidding in Two First-Price Sealed-Bid Auctions

Consider two first-price sealed-bid auction markets, each selling a distinct item
that may interest buyers or bidders. Denote by OBJi the item sold through auction
market i = 1, 2, respectively. Assume that n bidders compete for these two items.
We consider private-value auctions in which each bidder’s valuation of all item
bundles, in this case, {OBJ1}, {OBJ2}, and {OBJ1, OBJ2}, is private and known
only by this bidder. Denote by Uj bidder j’s valuation function.

In order to gain some initial insights into the structure of this dual auction mar-
ket without performing a complex, full-fledged strategic analysis, we study a game
against nature formulation of the above problem with the following simplifying as-
sumptions.

– All bidders j = 1, 2, . . . , n are risk-neutral.
– Complementarity between OBJ1 and OBJ2 exists only for bidder 1. In other

words, U1 is super-additive, i.e., U1({OBJ1, OBJ2}) > U1({OBJ1})+U1({OBJ2}),
whereas Uj for other bidders j = 2, 3, . . . , n are additive, i.e., Uj({OBJ1, OBJ2}) =
Uj({OBJ1})+Uj({OBJ2}). We denote by δ the extra utility generated for bid-
der 1 by acquiring both items, i.e., δ = U1({OBJ1, OBJ2}) − U1({OBJ1}) −
U1({OBJ2}).

– The highest bid among those submitted by bidder j = 2, 3, . . . , n for OBJ1 is a
random variable that follows a known cumulative distribution function (CDF)
G1(·). Denote by g1(·) the corresponding probability density function (PDF).

– The highest bid among those submitted by bidder j = 2, 3, . . . , n for OBJ2 is
a random variable that follows a known CDF G2(·). Denote by g2(·) the cor-
responding PDF. Furthermore, these two highest bids are independently dis-
tributed.

In a full-fledged strategic analysis based on equilibrium concepts such as Bayesian-
Nash equilibrium (Fudenberg & Tirole 1991), the distributions of the bids from
bidder 1’s rivals are derived from their equilibrium bidding strategies. In a game
against nature formulation, the bids of rival bidders are treated as part of the un-
certain environment (i.e., nature) which is characterized by the two distribution
functions (G1(·) and G2(·)).

We now derive bidder 1’s optimal bidding functions in the above game against
nature formulation. To simplify the notation, denote by u and v the bid bidder 1
submits to auction market 1 and 2, respectively; also denote by x and y bidder 1’s
valuation of OBJ1 and OBJ2, respectively. Under the first-price auction, the ex-
pected payoff of bidder 1, EP1(u, v), can be calculated as follows.

EP1(u, v) = (x − u) Prob{bidder 1 wins auction 1}

+ (y − v) Prob{bidder 1 wins auction 2}

+ δ Prob{bidder 1 wins auctions 1 & 2}.
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The probability of bidder 1 winning auction 1 equals G1(u) and the probabil-
ity of bidder 1 winning auction 2 equals G2(v). Thus the above equation can be
rewritten as follows.

EP1(u, v) = (x − u)G1(u) + (y − v)G2(v)

+ δ G1(u)G2(v).
(23)

To maximize bidder 1’s expected payoff, the first-order conditions for optimal
bids (u∗, v∗) must be satisfied. (For ease of exposition, we ignore boundary condi-
tions and various technical assumptions regarding G1(·) and G2(·).) The following
lemma states these conditions.

Lemma 1 Bidder 1’s optimal bidding functions (u∗, v∗) on two first-price, sealed-
bid auction markets have to satisfy the following conditions:

x − u∗ + δG2(v
∗) = G1(u

∗)/g1(u
∗) (24)

y − v∗ + δG1(u
∗) = G2(v

∗)/g2(v
∗). (25)

In some special cases, closed-form bidding functions can be derived based on
the above conditions. An example is given below.

Example 1 Assume that there are 2 bidders and that bidder 2’s bids for both OBJ1

and OBJ2 are drawn from a uniform distribution with support [0, 1]. Equations (24)
and (25) can then be simplified as follows.

x − 2u∗ + δ v∗ = 0

y − 2v∗ + δ u∗ = 0.

Solving the above system of linear equations (and also considering applicable
boundary conditions), we obtain the following optimal bidding functions:

u∗ =

{

min(1, 2x+δy
4−δ2 ) if 0 ≤ δ < 2,

1 if δ ≥ 2.
(26)

v∗ =

{

min(1, 2y+δx
4−δ2 ) if 0 ≤ δ < 2,

1 if δ ≥ 2.
(27)

Note that when δ = 0, the bidding functions reduce to u∗ = x/2 and v∗ = y/2.
They are precisely a special case of the classical Vickrey solution for individual
first-price auctions (Vickrey 1961). We also observe that when δ increases, both
u∗ and v∗ are nondecreasing.
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3.3 Bidding in Two Second-Price Sealed-Bid Auctions

We now study how to bid in two second-price sealed-bid auction markets. Consider
two such markets, each selling a distinct item of interest. Following the notation
from the previous section, we denote by OBJi the item sold through auction mar-
ket i = 1, 2, respectively. Assume that n risk-neutral bidders compete for these
two items under the private value assumption. Denote by Uj bidder j’s valuation
function. Furthermore, we assume that U1 is super-additive and other n − 1 valu-
ation functions are all additive. We use δ to denote the extra utility generated for
bidder 1 by acquiring both items.

In addition, we assume that it is known to any bidder j∗ 6= j that Uj({OBJ1})
and Uj({OBJ2}) are independently distributed according to known CDFs F1(·)
and F2(·), respectively. These CDFs are assumed to have PDFs, f1(·) and f2(·).

The above model is amenable to strategic analysis using Bayesian-Nash equi-
librium. We first derive the optimal bidding strategy for bidder j = 2, 3, . . . , n.
These bidders treat auctions 1 and 2 independently because of the structure of
their valuation functions. In each auction, the dominant strategy for these bidders
is to bid their values (Milgrom & Weber 1982). In effect, how bidder 1 will bid has
no impact on these bidders’ optimal bidding behavior.

We now derive the optimal bidding strategy for bidder 1 under the assumption
that all other bidders will bid their values.

Observe that, since bidders j = 2, 3, . . . , n bid their values, which are inde-
pendently distributed according to F1(·) and F2(·), the distributions of the highest
bids of these bidders are given by CDFs of the order statistics, (F1(·))

n−1 and
(F2(·))

n−1. We use W and Z to denote these two random variables, respectively.
In addition, we use x and y to denote bidder 1’s valuation of OBJ1 and OBJ2,
respectively.

Using I to denote an indicator function, we write the expected payoff of bid-
der 1 under his bids u, v as follows.

EP2(u, v) = EW [(x − W )IW<u] + EZ [(y − Z)IZ<v] +

EW,Z [δ IW<uIZ<v]

=

∫ u

−∞

(x − W ) d(F1(W ))n−1

+

∫ v

−∞

(y − Z) d(F2(Z))n−1

+ δ (F1(u))n−1(F2(v))n−1.

(28)

When δ = 0, bidder 1’s expected payoff EP2(u, v) can be decomposed into
two independent parts, producing the standard dominant truth-revealing strategy
u∗ = x for auction 1 and v∗ = y for auction 2. To maximize EP2(u, v) in general,
the following first-order conditions on optimal bids (u∗, v∗) must be satisfied.
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(n − 1)(x − u∗ + δ(F2(v
∗))n−1)(F1(u

∗))n−2f1(u
∗) = 0

(n − 1)(y − v∗ + δ(F1(u
∗))n−1)(F2(v

∗))n−2f2(v
∗) = 0.

Under standard regularity assumptions, these conditions can be further simpli-
fied, given in the following lemma.

Lemma 2 Bidder 1’s optimal bidding functions (u∗, v∗) on two second-price,
sealed-bid auction markets have to satisfy the following conditions:

x − u∗ + δ(F2(v
∗))n−1 = 0 (29)

y − v∗ + δ(F1(u
∗))n−1 = 0. (30)

We can easily verify an intuitive property: As δ increases, both u∗ and v∗ are
nondecreasing.

We now summarize the Bayesian equilibrium bidding functions for the model
studied in this section: Bidder 1’s equilibrium bidding functions are characterized
by Lemma 2; all other bidders bid their values. Below we present a special case
where u∗ and v∗ have simple, closed-form solutions.

Example 2 Assume that there are 2 bidders (n = 2), and that bidder 2’s values for
both OBJ1 and OBJ2 are drawn from a uniform distribution with support [0, 1].
Equations (29) and (30) can then be simplified as follows.

x − u∗ + δv∗ = 0

y − v∗ + δu∗ = 0.

We then obtain the following equilibrium bidding functions:

u∗ =

{

min(1, x+δy
1−δ2 ) if 0 ≤ δ < 1,

1 if δ ≥ 1.
(31)

v∗ =

{

min(1, y+δx
1−δ2 ) if 0 ≤ δ < 1,

1 if δ ≥ 1.
(32)

4 Related Work

In recent years, the literature on comparative online shopping from posted-offer
markets has been steadily growing, studying both economic decision-making and
technological issues (Tsvetovatyy, Gini, Mobasher & Wieckowski 1997, Dooren-
bos, Etzioni & Weld 1997, Montgomery, Hosanagar, Krishnan & Clay 2003). Our
work presented in Section 2 shares the same research goals and methodologies as
those that focus on economic decision-making mechanisms (e.g., (Montgomery
et al. 2003)). One differentiating feature of our work is that we explicitly study
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bundling and combinatorial interdependency issues and consider fixed transaction
costs, whereas others focus on single-item purchasing but take into consideration
issues such as network speed. In effect, our work and the existing online shop-
ping literature are complementary in that our models and the existing models can
be readily integrated to create practical online procurement agents that can take
advantage of online posted-offer markets.

There is a vast literature on auctions (Klemperer 1999). Here we only dis-
cuss several lines of auction research that are directly related to our work reported
in Section 3. Most combinatorial auction work assumes the existence of combi-
natorial auction markets which sell a full range of product bundles (Sandholm
2002, Rothkopf 1994). Recent years have also seen the increasing acceptance of
simultaneous ascending auctions in selected applications (Milgrom 2000). Such
auctions can be viewed as staged, simultaneously-run English auctions and can
mitigate some of the problems with full-fledged combinatorial auctions following,
e.g., the Groves-Clarke pivot mechanism. However, it is still unclear whether si-
multaneous ascending auctions will be suitable for general industrial procurement
tasks.

Researchers have also attempted to use a sequence of single-item auctions to
deal with product bundling issues (e.g., (Boutilier, Goldszmidt & Sabata 1999)).
A comparison between such sequential auction mechanisms and those proposed in
this paper will be of significant interest.

Several recent papers study two-product complementarities in various types
of auction markets (Brusco & Lopomo 2002, Sherstyuk 2002, Brusco & Lopomo
2001). Under certain restrictive assumptions regarding the size of the extra utility
generated by acquiring both products (i.e., δ in Section 3.2), these authors are able
to perform a full strategic analysis and obtain equilibrium bidding functions. How-
ever, these results do not seem to be generalizable for cases where these restrictions
on δ are removed.

The models presented in Section 2 and 3 provide a starting point towards
operationalizable, pragmatic decision-making mechanisms that can serve as the
core reasoning module of automated procurement agents. We briefly discuss re-
lated agent implementation issues. Developing procurement agents for posted-
offer markets is fairly straightforward given the current state-of-art Web technolo-
gies. With limited Web content parsing capabilities, such agents can relatively
easily retrieve the pricing information along with the applicable shipping costs
for items of interest from e-tailers, comparative shopping sites, and relevant info-
mediaries (Zeng & Nissen 2004). Procurement algorithms and heuristics can be
implemented either as an integral part of these agents or as some generic service
accessible to these agents. Such agents can also (semi)automate various transac-
tional aspects of procurement (Nissen 2001).

Developing procurement agents that can bid effectively across multiple auction
markets, however, seems to pose many challenges. Real-time access to informa-
tion about relevant auction sessions from one or more online auction houses is not
difficult when using tools such as those available from auctiontammer.com.
Obtaining information regarding other buyers in terms of their value distributions,
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however, is challenging. One possible approach is to construct empirical distribu-
tions using data from past auctions selling similar items.

One of the key challenges in developing online procurement agents is evalua-
tion. How do we know whether and to what extent the models developed actually
improve the overall effectiveness of the industrial procurement process? How will
the human procurement personnel interact with such automated procurement sys-
tems? A promising experimentation-based approach to (partially) address this im-
portant evaluation challenge has been attempted by the multi-agent research com-
munity (Greenwald & Stone 2001). This community organizes an annual trading
agent tournament involving multiple fully-automated trading agents developed by
various research groups. These agents are charged with the task of assembling
travel packages for a fixed number of customers. They interact with each other
through multiple auctions of different types run by the tournament organizer, and
are rated by their performance calculated as the difference between the sum of
customer utilities (measured by dollars) and the total cost of travel packages. The
strategies used by winning agents in this simulated environment clearly provide
useful insights about effective agent design in real-world applications. At the same
time, such a simulated competitive environment serves as an infrastructure to eval-
uate empirically any procurement agents before their adoption or even trial in real-
world applications.

5 Conclusion and Future Work

This paper presents two sets of models that can guide procurement agents to make
optimal procurement decisions in a number of scenarios in which bundling and
combinatorial interdependency considerations play an important role. The first set
of models formalizes optimal purchasing decisions across posted-offer markets
with fixed transaction costs. We discuss the computational complexity of these
models and suggest methods based on discrete location theory to deal with the
related computational issues. The second set of models focuses on the coordination
of bidding activities across two sealed-bid auctions. For each of these models, we
derive the conditions that optimal bidding functions have to satisfy.

The work reported in this paper is the beginning of a long-term research agenda
aimed at developing practical online procurement mechanisms that can deal with
bundling and combinatorial interdependency issues. There remain many open re-
search questions of practical importance in this area of study. We conclude this
paper by summarizing some of them we are currently working on.

– We are currently developing a framework to coordinate bidding activities across
multiple English auctions when complementarities between items are present.
An important complication with multiple English auctions is that these auc-
tions may end at different times. For some auctions, the end time is fixed and
known before the auction starts. For others, the end time is unknown and may
even be directly influenced by the chosen bidding strategy (e.g., as in soft-
ending English auctions). We are in the process of analyzing all these possible
scenarios and developing the corresponding contingent bidding strategies.
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– Section 3 presents structural results regarding the conditions that the optimal
bidding functions have to satisfy. We are currently developing practical com-
putational methods to calculate these optimal bids under a broad spectrum of
value distributions.

– Hybrid markets such as a combination of a posted-offer market and an En-
glish auction have recently emerged (e.g., eBay’s buy-it-now option). We are
working on models that can deal with such hybrid markets as well as those
consisting of a heterogeneous collection of auctions.

– Evaluation is an important component of the type of research reported in this
paper. We are currently extending the preliminary evaluation for posted-offer
markets reported in Section 2.3. We are also collecting data from online auc-
tion sites and plan to perform a similar computational study to evaluate the
proposed bidding coordination mechanisms across online auction markets.
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