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Is There a Plausible Theory for Decision under Risk? 
 

By James C. Cox, Vjollca Sadiraj, Bodo Vogt, and Utteeyo Dasgupta1 

 

Theories of decision under risk that model risk averse behavior with decreasing marginal utility of 

money have previously been critiqued with calibration analyses. This paper introduces a dual 

calibration critique that applies to decision theories that represent risk aversion with nonlinear 

transformation of probabilities or nonlinear transformation of payoffs or both types of 

transformations. The dual calibration critique makes clear how plausibility problems with theories of 

decision under risk are fundamental. Testable calibration propositions are derived that apply to dual 

theory of expected utility, cumulative prospect theory, rank dependent utility theory, and expected 

utility theory. Heretofore, calibration critiques have been based on thought experiments. This paper 

reports real experiments that provide data on the empirical relevance of the calibration critique to 

evaluating the plausibility of theories of decision under risk.  

 

Keywords: Decision Theory, Risk, Calibration, Experiments 

  

1. Introduction 

Much literature during the last 25 years has focused on differences between alternative theories of 

decision making for risky environments. In contrast, we focus on the fundamental problems that they 

have in common.  

Prominent decision theories explain risk-avoiding behavior with models that incorporate (a) 

concave transformation of money payoffs (expected utility theory) or (b) convex transformation of 

decumulative probabilities (dual theory of expected utility) or (c) both payoff and probability 

transformations (rank dependent utility theory and cumulative prospect theory). We identify patterns 

of risk aversion for which all of these theories have implausible implications that follow from 

calibration propositions.  

 

                                                 
 
1 This is a revision and extension of our 2005 working paper titled “On the Empirical Plausibility of Theories of 
Risk Aversion.”  The present paper incorporates a third experiment (this one on probability transformations).  
We are grateful to Glenn W. Harrison, Peter P. Wakker, and Nathanial T. Wilcox for helpful comments and 
suggestions. Financial support was provided by the National Science Foundation (grant numbers DUE-
0226344, DUE-0622534, and IIS-0630805) 
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Previous calibration literature focuses on implausible implications that can follow from 

concave transformation of money payoffs (or “decreasing marginal utility of money”). We provide 

dual calibrations that focus on implications of nonlinear transformation of probabilities as well as 

nonlinear transformation of payoffs. The first calibration proposition identifies a pattern of small-

stakes risk aversion that has implausible large-stakes risk aversion implications for dual theory of 

expected utility but not for expected utility theory.  In contrast, the second calibration proposition 

reports a different pattern that has implausible implications for expected utility theory but not for the 

dual theory of expected utility.  Each calibration proposition has a corollary that implies implausible 

risk aversion for rank dependent utility theory and cumulative prospect theory. The dual corollaries 

reveal that theories that model risk aversion with nonlinear transformations of both probabilities and 

payoffs are subject to both types of calibration critique.  Since prominent theories model risk-avoiding 

behavior with nonlinear transformation of payoffs or nonlinear transformation of probabilities or both 

types of nonlinear transformation, our analysis shows how all such theories can be subjected to 

calibration critique. 

Calibrations of the implications of nonlinear transformations of payoffs are based on 

suppositions about patterns of small-stakes risk aversion exhibited by individual agents. Previous 

literature has not reported empirical tests of such suppositions; hence the empirical relevance of extant 

calibrations of payoff transformation theories has been unknown. The present paper reports three 

experiments designed to shed light on the empirical validity of the small-stakes risk aversion 

suppositions underlying both the nonlinear payoff transformation and nonlinear probability 

transformation propositions and corollaries reported herein, and thereby on the relevance of these 

calibrations to evaluating the empirical plausibility of theories of decision under risk. Each 

experimental design also generates data with testable implications for theories with the other type of 

nonlinear (money payoff or probability) transformation as well as implications for expected value 

theory (that transforms neither money payoffs nor probabilities).  
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2. Calibration of Probability Transformations 

The dual theory of expected utility (Yaari, 1987) models risk aversion solely with convex 

transformation of decumulative probabilities and has a utility functional that is always linear in money 

payoffs as a consequence of the dual independence axiom. Cumulative prospect theory (Tversky and 

Kahneman, 1992) and rank dependent utility theory (Quiggin, 1993) represent risk preferences with 

nonlinear transformations of both probabilities and payoffs. We report a calibration proposition for the 

dual theory and a corollary that applies to cumulative prospect theory and rank dependent utility 

theory.  

 

2.1. Calibration of Patterns of Risk Aversion for Dual Theory of Expected Utility 

We follow Yaari’s (1987) convention in writing the probability transformation function ( )f ⋅  for dual 

theory using decumulative probabilities. Let  denote a lottery that pays amounts of money L jy  with 

probabilities jp ,  , where 1,2, ,j n= ⋅ ⋅ ⋅ 1jy yj −≥  for all j . The dual expected utility of the lottery  

is 

L

(1) . 
1 1

( ) [ ( ) ( )]
n n n

DU k k j
j k j k j

U L f p f p y
= = = +

= −∑ ∑ ∑

If the agent is risk averse then the function ( )f ⋅  is convex. If the agent is risk neutral then the 

probability transformation function ( )f ⋅  is linear and functional (1) represents the expected value of 

the lottery.  

We start with an example that illustrates the large stakes risk aversion implications for dual 

theory of a specific pattern of small stakes risk aversion. For simplicity, the example assumes global 

convexity of the probability transformation function, while the following proposition does not. 

Consider lotteries of the following type: 2 1n −  pairs of lotteries indexed by 1, 2, , 2 1i n= ⋅⋅⋅ − . Lottery 

iA  in pair i  pays amounts of money 40 or 0 with probabilities  and 1 // 2i n 2i n− , and has expected 

value . Lottery 40 n/ 2i iB  in pair i  is constructed from iA  by transferring probability 1/  from 

each of the “tail” payoffs of  and  to a middling payoff of 10 . This produces a lottery that pays 

40 or 10 or 0 with probabilities ( 1  and 1/  and 1 (

2

/ 2n

n

40 0

− ) / 2i n n 1)i− + , with expected value 
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(40 20) / 2 .i − n   If iB  is preferred to iA , for all 1, 2, , 2 1i n= ⋅⋅⋅ −

(( 1) / 2 )] 40

, then according to the dual theory 

, which together with statement (1) imply ( ) (DU i DUU B U≥

40 ((

)

/ 2

iA

1)(2) ) 10[ (( ) ( / 2 )1) / 2f i n

1.n −

f n f i− + i + f i n− − ≥ n ,  

for i   Inequality (2) can be rewritten as  1, 2, , 2= ⋅⋅⋅

(3) [ ]( / 2 ) ( 0) ( ) , 1, ,2 1((1 ) / 2 ) 30 /1 / 2 ) (( 1) / 2f i n+ − f i n f n i n= …i n f i− −≥ − ’ 

which with notation  / 2k i n= , is simply   

[ ]/ 2 ) .( 1/ 2 ) ( ) 3 ( ( 1)f k n+ − f k f k f k≥ − n−

( )

 (4) 

Differentiability and convexity of the function f ⋅  imply that the expression on the left hand side of 

inequality (4) is not larger than  f ( 1/ 2 ) /k + 2n n

( 1 / 2 ) / 2

′   whereas the expression inside the square brackets 

on the right hand side is not smaller than f k n n′ − ; hence ( 1 / 2 ) 3 ( 1/ 2 )f k n f k n′ ′+ ≥ −

2 2 ,t n i

. 

The last inequality and iteration for positive integers  such that ,t ≤ − imply   

/ 2 ) 3 ( / ).t
(5) ( / 2 2 2f i n

( )

t n f n′ ′+ ≥ i  

Inequality (5) provides intuition for calibration of probability transformation functions: it informs us 

that the postulated pattern of risk aversion implies that the slope of the probability transformation 

function f ⋅  at points 1 /  apart increases exponentially. Exponential increase in transformed 

decumulative probability of money payoffs implies that, relative to small payoffs, large payoffs 

receive very low (transformed-probability) weight in the dual theory functional (1), which implies the 

types of implausible large-stakes risk aversion described in the examples following the proposition. 

n

Proposition 1 presents a general calibration result for dual theory probability transformations; 

the proposition does not assume global convexity. Let 3 3{ , ; 2 2 1, ; }y p y p y  denote a three-outcome 

lottery that pays positive amounts: 3y  with probability 3p 2y;  with probability 2p ; and 1y  with 

probability 2 31 p p−− 1j jy y −≥. As above, we use the convention  for all j . Let { ,2 1};y p y  denote a 

binary lottery that pays the larger amount of money 2y  with probability p  and the smaller positive 

amount of money 1 py − . We consider the 2n 1−  pairs of lotteries  with probability 1
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{ , ( 1) / 2 ; ,1 / ;0}iB cx i n x n= −  and { , / 2 ;0}iA cx i n= . The highest payoff  in a cx iB  lottery is 

assumed to be more than twice the middle payoff x ; that is, . Define 2>c

1 .i−

1 1

( , ) 1 ( 1) ( 1)
n n

j

j i

K t n t t
= =

= + − −∑ ∑  Let  and , respectively, indicate weak and strong 

preference.  Let N denote the set of positive integers. 

 

n N∈  and  be given.  If   2c >Proposition 1 (calibration for dual theory of expected utility). Let  

P(1*)    { ,{ , ( 1) / 2 ; ,1 / ;0}cx i n x n− / 2 ;0},cx i n for all 1, 2, 1i n, 2= ⋅⋅⋅ − , then 

{  for all  z ( , ),0.5;0},zK c n 0.z >

2c > ( ,K c

 

Proof: see appendix A.1. 

 

Note that, for ,  as . Therefore, the larger is the value of , the 

more extreme are the implications from the calibration. This implies that for any , as big as one 

chooses, there exists a large enough  such that preference for the three outcome lottery 

)n →∞ n →∞

n

n

K

iB  over the 

two outcome lottery 1, 2, , 2iiA 1n, for all integers = ⋅⋅⋅

0.z >

2 ;0}i n 0, (

− , implies a preference for  for sure over 

the risky lottery { ,  for all  

z

0.5; 0}zK

210cx = 100x =

0, /

Some implications of Proposition 1 are reported in Table 1. For example, let the payoffs be 

 and . Suppose that the agent rejects a lottery with payoffs [210,0] and probabilities 

[i/100,1-i/100] in favor of a lottery with payoffs [210,100,0] with probabilities [(i-1)/100,2/100,1-

(i+1)/100] for all  i = 1,…99. Application of Proposition 1 with c = 2.1, x = 100 and n = 50 tells us that 

for this pattern the dual  theory predicts that the agent prefers 100 for sure to a lottery that pays 11,830 

or 0 with even odds, as reported in the First DU Calibration column and third row of Table 1. The 

Third DU Calibration column of Table 1 reports calibrations for the small stakes risk aversion pattern 

that involves the lotteries {4  and {4 1) / 2 ;10, ;0}i n n1/−  used in the illustrative 

example above. If the pattern of rejection is true for all i = 1,…,19 (as in the second row of the table) 

then the prediction is that the agent prefers 100 for sure to a lottery that pays 5.9 million (that is, 0.59 
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×107) or 0 with even odds. The Second DU Calibration column reports results for cx = 250 and x = 

100. 

 

2.2. Calibration of Patterns of Risk Aversion for Rank Dependent Utility Theory and Cumulative 

Prospect Theory 

Calibration of patterns of risk aversion for theories that transform only probabilities can be extended to 

theories that transform both payoffs and probabilities, such as rank dependent utility theory 

(Quiggin,1993) and cumulative prospect theory (Tversky and Kahneman, 1992). The utility functional 

for rank dependent utility theory incorporates a transformation function ( )υ ⋅  for money payoffs. We 

write the functional with transformation function ( )h ⋅  for decumulative probabilities.2  In that case, 

this theory represents preferences over a lottery  with a functional of the form L

(6) 
1 1

( ) [ ( ) ( )] ( )
n n n

RD k k
j k j k j

U L h p h p yυ
= = = +

= − ⋅∑ ∑ ∑ j . 

Cumulative prospect theory transforms both probabilities and payoffs differently for losses than for 

gains. However, for the specific lotteries considered in this section, cumulative prospect theory does 

not differ from rank dependent utility theory.  

The following corollary to Proposition 1 applies to rank dependent utility theory and 

cumulative prospect theory. The proposition for dual theory, with functional that is linear in payoffs, 

incorporates the assumption that , which implies that the highest payoff  in a 2c > cx iB  lottery is 

more than twice the amount of the middle payoff x  in the lottery.  In the corollary, we restate the 

assumption for money payoff transformations ( )υ ⋅ , that can be nonlinear, as ( ) / 2( )xcxυ υ > .  Let 

 be the inverse function of 1( )υ− ⋅ ( )υ ⋅ .  One has: 

                                                 
 
2 In the original version of rank dependent utility theory, Quiggin (1993) wrote functionals with transformation 
functions for cumulative probabilities. The two representation conventions are logically equivalent.  
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Corollary 1 (calibration for cumulative prospect theory and rank dependent utility theory). 

Suppose that condition P(1*)  is satisfied and that ( ) / ( ) 2cx xυ υ > . Then 

, for all  1{ ( ( ) ( ( ) / ( ), )),0.5;0}z z K cx x nυ υ υ υ−; 0.z >

 

Proof: see appendix A.1. 

 

Specification of a money transformation function ( )υ ⋅  implies pairs of values of  and c x  that 

satisfy the condition ( ) / ( ) 2cx xυ υ >  and can be used to illustrate implications of Corollary 1. For 

example, the right-most column in Table 1 reports calibrations for rank dependent utility theory (RD) 

and cumulative prospect theory (PT) using the money transformation function 0.88( )y y

cx

υ =

=

 (Tversky 

and Kahneman, 1992, p. 311). With this money transformation function, lottery payoffs  and 40

 satisfy the condition. As reported in the third row of the right-most column, if the agent rejects 

a lottery with payoffs [40,0] and probabilities [i/100,1-i/100] in favor of a lottery with payoffs 

[40,10,0] with probabilities [(i-1)/100,2/100,1-(i+1)/100], for all  i = 1,…99, then calibration for 

cumulative prospect theory and rank dependent utility theory implies that 100 for sure is preferred to 

the even odds lottery that pays 0.29×1024 or 0.  

10x =

 

3. Calibration of Payoff Transformations  

Expected utility theory represents risk aversion solely with concave transformation of money payoffs 

and has a utility functional that is always linear in probabilities as a consequence of the independence 

axiom. As noted above, cumulative prospect theory and rank dependent utility theory represent risk 

preferences by nonlinear transformations of both probabilities and payoffs. We report a calibration 

proposition for expected utility theory and a second corollary that applies to cumulative prospect 

theory and rank dependent utility theory.3  

                                                 
 
3 Previous calibration analyses for theories with nonlinear transformations of payoffs are reported in Rabin 
(2000), Neilson (2001), Cox and Sadiraj (2006), and Rubinstein (2006).   
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3.1. Calibration of Patterns of Risk Aversion for Expected Utility Theory 

Let  denote a given amount for the agent’s initial wealth. The expected utility of the binary lottery w

{ ,2 1; }y p y  is  

(7) 2 1 2({ , ; }) ( ) (1 ) ( )U y p y p y p y1ϕ ϕ= + − , 

where ( )yϕ  represents:  for the expected utility of terminal wealth model;  for the 

expected utility of income model; or  for the expected utility of initial wealth and income 

model.

(TWu w y+ ) ( )Iu y

& ( , )W Iu w y

4   

We now explain the large stakes risk aversion implications of postulated patterns of small 

stakes risk aversion for expected utility theory. These implications hold for all three expected utility 

models. Consider pairs of certain payoffs in amounts x a+  and binary lotteries { , ; }x b p x+ . Each 

binary lottery is assumed to have higher expected value than its paired certain payoff; that is, pb a> . 

Suppose that an agent prefers the certain payoff x a+  to the lottery { , ; }x b p x+ , for all [ , ]x m M∈ , 

. Such a pattern of risk aversion implies exponentially decreasing marginal utility of 

lottery payoff 

0M m> ≥

y  (Cox and Sadiraj, 2006, pgs. 48-49), which is the intuition for calibrations of money 

payoff transformation functions that imply implausible risk aversion for expected utility theory.  

 Proposition 2 states a concavity calibration result for expected utility theory. Let x  denote 

the largest integer smaller than x  and define ( ) [(1 ) / ] [ / ( )]r t t t a b a= − × − . One has:  

                                                 
 
4 These three expected utility models are discussed in detail in Cox and Sadiraj (2006). 



 9

Proposition 2 (calibration for expected utility theory). Let positive numbers a, b and  be 

given such that . Suppose that 

(0,1)p∈

pb a>

 (P.2*)   x a+  { , ; },x b p x+ for all integers [ , ]x m M∈ , .  0M m> ≥

If ( )ϕ ⋅  is (weakly) concave then for  and all ( )q r p= [ ln( ) / ln ,z m b q qp q M ],∈ + − , 

{ ,  for all G  such that  z ; }G p m

(*)  ( )/(2 1) / (1 ) M m bG M b q q Aq− −< + − − + ,  

where ( )( )/ ( )/2( / 1) (1 ) / (1 )z m b z m bA b a q q q b q− −= − − − − .  

 

Proof: See appendix A.2. 

 

Note that for any given m and z , the third term on the right hand side of inequality (*) 

increases geometrically in M because 1q <  (which follows from pb a> ). This implies that for any 

amount of gain G , as big as one chooses, there exists a large enough interval in which preference for 

x a+  over a risky lottery { ,0. }5;x b+ x , for all integers x  from the interval [ , , implies a 

preference for  for sure to the risky lottery {  We use inequality (*) in Proposition 2 to 

construct the illustrative examples in Table 2.  

]m M

z ,0.5; }.G m

  Suppose that an agent prefers the certain amount of income  to the lottery 100x +

{ 210,0.5; }x x+ , for all integers , where values of ],900[ Mx∈ M  are given in the “Rejection 

Intervals”  column of Table 2. In that case all three expected utility (of terminal wealth, income, and 

initial wealth and income) models predict that the agent prefers receiving the amount of income 3,000 

for sure to a risky lottery { , where the values of  are given in the “First EU 

Calibration” column of Table 2. For example, if 

,G 0.5; 900} G

50000],900[],[ =Mm  then  for all 

three expected utility models. According to the entry in the “Second EU Calibration” column and 

130.1 10= ×G

M  

= 30,000 row of Table 2, expected utility theory predicts that if an agent prefers certain payoff in 

amount  to lottery {100x + 250,0.5; }x x+ , for all integers x  between 900 and 30,000, then such an 

agent will prefer 3,000 for sure to the 50/50 lottery with positive outcomes of 900 or . 240.12 10×
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3.2. Calibration of Patterns of Risk Aversion for Rank Dependent Utility Theory and Cumulative 

Prospect Theory 

In the case of binary lotteries, the utility functional for rank dependent utility theory can be written as  

(8) 2 1 2 1({ , ; }) ( ) ( ) [1 ( )] ( )RDU y p y h p y h p yυ υ= + − , 

given the convention of transforming decumulative probabilities. For the binary lotteries with all 

positive payoffs considered here, utility functional (8) also represents preferences for the original 

version of cumulative prospect theory with zero-income reference point (Tversky and Kahneman, 

1992). 

The following corollary to Proposition 2 applies to rank dependent utility theory and 

cumulative prospect theory with zero-income reference point. The proposition for expected utility 

theory, with functional that is linear in probabilities, incorporates the assumption that pb a> , which 

implies that the expected value of the lottery { , ; }x b p x+ is larger than the amount of the certain 

payoff x a+ . In the corollary, we restate the assumption for probability transformation functions ( )h ⋅ , 

that can be nonlinear, as . ( )h p b a>

 

Corollary 2 (calibration for cumulative prospect theory and rank dependent utility theory). Let 

positive numbers  and  be given such that . Suppose that statement (P.2*) is 

satisfied. If  

,a b (0,1)p∈ ( )h p b a>

( )υ ⋅  is (weakly) concave then for ( (q r ))h p=  and for all  

,  for all  that satisfy  inequality (*) in 

Proposition 2.  

[ l (z m p∈ + n(b q )) / ln ,q M ] { ,z G;qh− ; }p m G

 

Proof: See appendix A.2. 

 

Calibration with the lottery { 210,0.5; }x x+  and sure payoff 100x + , in one of the examples 

considered above, has no implications for cumulative prospect theory or rank dependent utility theory 

if one uses probability transformation functions from the literature. For cumulative prospect theory, 

Tversky and Kahneman’s (1992, p.300) probability weighting function for binary lotteries with non-

negative payoffs is . For rank dependent utility theory, Quiggin’s (1993, p.52) (0.5)w+ 0.= 42
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probability transformation function  for binary lotteries has 1 (q p− ) (0.5) 0.58q = . In our notation, 

let . With this value, (0.5)h = (0.5)w+ = 1 (0.5)q− 0.42= 210 (0.5h ) 100< ;  therefore Corollary 2 

does not apply. However, preference for the certain payoff 100x +  over the lottery { 250,0.5; }x x+

20x

 

satisfies the assumption in Corollary 2 because  As shown in the First PT & RD 

Calibration column and M = 30,000 row of Table 2, rank dependent utility theory and cumulative 

prospect theory with  imply that an agent will prefer 3,000 for sure to the 50/50 lottery 

with positive outcomes 900 or 0.46 ×107 .  

250 (0.5h ) 100.>

(h 0.5) 0.42=

+As a final illustrative example, suppose that an agent prefers certain payoff in amount  

to the lottery { 50,0.5; }x x+ , for all integers x  between 900 and 6,000. Again, this pattern satisfies 

the assumption in Corollary 2 because . According to the entry in the Third EU 

Calibration column and 

50h(0.5) 20>

M = 6,000 row of Table 2, expected utility theory predicts that an agent who 

rejects these lotteries will prefer 3,000 for sure to the lottery with 0.5 probabilities of gaining 900 or 

0.4 1020. As shown in the right-most column of Table 2, cumulative prospect theory and rank 

dependent utility theory imply than an agent who rejects these same lotteries will prefer 3,000 for sure 

to the lottery with 0.5 probabilities of gaining 900 or 0.29 

×

×107 . 

 

4.  Experimental Design Issues  

The calibration propositions and corollaries demonstrate that prominent theories of decision under risk 

may have implausible implications. But such a calibration critique of decision theory has unknown 

empirical relevance in the absence of data that provide support for the “calibration patterns” of risk 

aversion that are postulated in the propositions and corollaries. We next discuss issues that arise in 

designing experiments with these calibration patterns. The issues differ with the supposition 

underlying a calibration and the type of theory of risk aversion the calibration applies to.  

 

4.1  Power vs. Credibility with Probability Calibration Experiments 

xTable 1 illustrates the relationship between the scale of payoffs in the lotteries ( ), the ratio of high 

and middle payoffs in the risky lottery ( ), and the difference between probabilities in adjacent terms c
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in the calibration (determined by the value of  in n 1
2 2
i i
n n

−
− ). The design problem for probability 

transformation function calibration experiments is inherent in the need to have a fine enough partition 

of the [0,1] interval for the calibration in Proposition 1 to lead to the implication of implausible risk 

aversion in the large (if the risk aversion supposition underlying the calibration has empirical validity).  

There are two problems with big values of the partition parameter  First, a subject’s 

decisions may involve trivial financial risk because the differences between all the moments of the 

distributions of payoffs for the two outcome lottery { ,  and the three outcome lottery 

 become insignificant  as  increases. For example, if , c = 4, and x = 

$25, then the lotteries are {$100  and {$

.n

=

, 0}.

/ 2 ;0}cx i n

100, ( 1) /1000;i

{ , ( 1) / 2 ; ,1/ ,0}cx i n x n− n 500n

500, /1000;0}i $25,1/−  In that case, the 

difference between expected values of the two-outcome and three-outcome lotteries is 5 cents (for all 

i).  For the same n, c, and x values, the difference between standard deviations of payoffs for the two-

outcome and three-outcome lotteries, at i  = 500, is 4 cents.  Second, for large  the adjacent 

probabilities differ by 1/  and the subject’s decision task is to make  choices. For example, for 

 adjacent probabilities differ by  and the subjects’ decision task is to make 1,000 

choices. In such a case, the subjects would not be sensitive to the probability differences and the 

payoffs would arguably not dominate decision costs because of the huge number of choices needing to 

be made. In contrast, if the length of each subinterval is 1/1  (i.e. 

n

2n 2n

5n

500n = 0.001

0 = ) then the difference in 

expected payoffs between the two-outcome and three-outcome lotteries is $5 for the above values 

 and , and for i = 5 the difference in standard deviations is $4.17; furthermore, the 

subjects’ decision task is to make only 10 choices. The calibration implications of n = 5 are less 

spectacular than for n = 500, as shown in Table 1, but the resulting experimental design can credibly 

be implemented.  

$100cx = $25x =

 

4.2  Affordability vs. Credibility with Payoff Calibration Experiments 

Table 2 illustrates the relationship between the size of the interval [ ,  in the left-most column, 

used in the supposition underlying a payoff transformation function calibration, and the size of the 

]m M
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high gain  in the result reported in the other columns of the table. Payoff transformation function 

calibration experiments involve tradeoffs between what is affordable and what is credible, as we shall 

next explain.  

G

 As an example, suppose one were to consider implementing an experiment in which subjects 

were asked to choose between a certain amount of money 100$$ +x  for sure and the binary lottery 

{$ $210 .5;$ },0x x+  for all x  between m = $900 and M = $350,000. Suppose the subject always 

chooses the certain amount  and that one of the subject’s decisions is selected randomly for 

payoff. Then the expected payoff to a single subject would exceed $175,000. With a sample size of 30 

subjects, the expected payoff to subjects would exceed $5 million, which would clearly be 

unaffordable. But why use payoffs denominated in U.S. dollars?  Proposition 2 is dimension invariant. 

Thus, instead of interpreting the figures in Table 2 as dollars, they could be interpreted as dollars 

divided by 10,000; in that case the example experiment would cost about $500 for subject payments 

and clearly be affordable. So what is the source of the difficulty? The source of the difficult tradeoff 

for experimental design becomes clear from close scrutiny of Proposition 2: the unit of measure for m 

and M is the same as that for the amounts a and b in the certain payoffs and binary lotteries (see 

statement (*) in Proposition 2). If the unit of measure for m and M is $1/10,000 then the unit of 

measure for a and b is the same (or else the calibration doesn’t apply); in that case the certain payoff 

becomes  and the binary lottery becomes {$0.0001

100$$ +x

$0.0001x + $0.01 $0.021,0.5;$0.0001 }x x+ , 

which involves only trivial financial risk of about one cent.  

The design problem for concavity calibration experiments with money payoffs is inherent in 

the need to calibrate over an [ ,  interval of sufficient length for the calibrations in Proposition 2 

and Corollary 2 to lead to the implication of implausible risk aversion in the large (if the supposition 

underlying the calibration has empirical validity). There is no way to avoid this problem; the design of 

any experiment on payoff transformation function calibration will reflect a tradeoff between 

affordability of the payoffs and credibility of the incentives.  

]m M
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5. Magdeburg Experiment with Probability Transformation Theories 

An experiment with probability transformation theories was conducted at the MAX-Lab of the Otto-

von-Guericke-University of Magdeburg in February 2007. There were in total 32 subjects. Data for 

two subjects are unusable because of some unrecorded responses by the subjects. In this experiment, 

all payoffs were denominated in euros (€).  

 

5.1 Experimental Design 

Subjects were asked to make choices in each of the nine rows shown in Table 3. Row number j , for 

, presented a choice between (a) a lottery that paid €0 with probability and €40 

with probability 1  and (b) a lottery that paid €0 with probability ( 1 , €10 with 

probability , and €40 with probability 1

1,2,...,9j =

2 /

/10j

) /10/1j− 0 j −

10 [( 1 2) /10].j− − + 5  In each row, a subject was asked to 

choose among option A (the two outcome lottery), option B (the three outcome lottery), and option I 

(indifference). The subjects were presented with the instructions at the beginning of the session where 

the payment protocol of selecting one of the nine rows randomly for money payoff (by drawing a ball 

from a bingo cage in the presence of the subjects) was clearly explained to the subjects in the 

instructions as well as orally. The instructions also explained that if a subject chose option I then the 

experimenter would flip a coin in front of the subject to select option A or B for him or her (if that row 

was randomly selected for payoff). It was also explained that payoff from the chosen lottery would be 

determined by drawing a ball from a bingo cage in the presence of the subject.6  Appendix B.1 

provides more information on the experiment protocol. 

  

5.2  Implications of the Data for Dual Theory of Expected Utility  

In all tests for the presence of choice patterns that imply implausible risk aversion in the large, we 

aggregate choices of option B with choices of option I (indifference) because the “if” statement in 

                                                 
 
5 The lotteries in Table 3 correspond to the example in section 2.1 when n = 5 and row  j in the table represents 
term 10 – i  in the example. 
6 Subject instructions in English for all experiments reported in this paper are available on 
http://excen.gsu.edu.jccox. 

http://excen.gsu.edu.jccox/
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 P(1*) in Proposition 1 involves weak preference for B over A. The aggregation of options B and I is 

represented as B*. We begin with a conservative test for incidence in the data of patterns of choices 

that, according to Proposition 1, imply implausible risk aversion in the large with dual theory of 

expected utility. The conservative test procedure admits no errors in observed choices; it simply counts 

the number of subjects whose choices exactly fit patterns that imply implausible risk aversion in the 

large. Subsequently, we apply a model that allows errors in observed choices.  

As reported above, there are usable data for 30 subjects. For eight subjects who switched at 

most once from option A to B*, and who chose B* from row 4 (or earlier) through row 9 in Table 3, 

the dual theory predictions are reported in the top four rows of Table 4.7   Data for these eight subjects  

support the conclusion that the revealed small stakes risk aversion in the experiment implies large 

stakes risk aversion for which { , , where k  takes values 9, 27, 81 and 244 

whereas  

;0}z p ; { ,0.5;0}kz

p  takes values  0.7, 0.8, 0.9 and 1 respectively. In other words,  a lottery that pays z  with 

probability p  and pays  with probability 10 p−  is preferred to a lottery that pays  or 0 with 

probability . Furthermore, the indicated preference holds for all positive values of  For example, 

the row 3 entry in Table 4 reports that the risk aversion revealed by subject 17 implies (from setting 

kz

.0.5 z

z = 4,000) that he or she would prefer the lottery that pays 4,000 with probability 0.9 and pays 0 with 

probability 0.1 to the lottery that pays 324,000 (since k =81) or 0 with probabilities of 0.5. 

Alternatively, note that the row 3 entry implies a preference for the lottery that pays 100 with 

probability 0.9 and 0 with probability 0.1 over the 50/50 lottery that pays 8,100 or 0. The data for 

subject 7 (see row 4) implies that he or she prefers the lottery that pays 4,000 for sure to the lottery that 

pays 976,000 (since 244) or 0 with probabilities of 0.5. The implied aversions to large stakes risks 

for the 8 subjects reported in the top four rows of  Table 4 are implausible. 

k =

Another five subjects who chose option B in row 1 and either option B or I in row 9 reveal risk 

preferences that can be calibrated, as follows. We assume that if an individual switches from option B 

                                                 
 
7  It is straightforward to extend the proof in appendix A.1 to apply to the case of “six or more adjacent choices 
of B*” as follows: in statement (a.5), replace 1 - f(0.5) with f(p) – f(0.5), where p = 0.7, 0.8, 0.9 or1, depending 
on the row in Table 4, and then  complete the remaining steps in the proof using the parameters cx = 40 and x = 
10. 
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choices to an option A choice, and then back to option B, that the individual is less risk averse but not 

locally risk preferring at the switch row. In that case, data for these five subjects support the 

conclusion that an individual is predicted by dual theory to prefer a certain payoff in amount  to 

playing a 50/50 lottery with payoffs of 0 or  reported in the bottom 5 rows of Table 10, where  is 

any positive amount. For example, the data for subject 11 support the conclusion that he or she would 

prefer 4,000 for sure to the 50/50 lottery with payoffs of 0 or 396,000. The implied aversions to large 

stakes risks for the five subjects reported in the five bottom rows of Table 4 are implausible . 

z

zkz

This conservative procedure for data analysis leads to the conclusion that 43 percent (or 13/30) 

of the subjects’ choice patterns imply implausible risk aversion in the large for dual theory. This 

counting procedure is quite conservative in that it only includes choice patterns that exactly match one 

of the calibration patterns.  

We next consider error-rate analysis to infer statistical conclusions about the proportion of 

subjects in this experiment who made choices that reveal underlying preferences that are subject to 

large stakes risk aversion calibration according to Proposition 1.8  As explained above, there are two 

relevant categories of choices for each decision task, option A and the aggregation of options B and I, 

which we represent as B*. We record choice patterns for subjects with sequences of nine letters. The 

order in which we write the symbols A and B* corresponds to the order of the rows in Table 3 from 

top to bottom. For example, the pattern [A,B*,B*,A,B*,B*,B*,B*,A] would indicate that a subject 

chose option A in rows 1, 4, and 9 and chose option B or option I in all other rows. Given the 

parametric configuration of our experiment, the theory would predict clearly implausible risk aversion 

in the large for any pattern of choices with B* in seven or more adjacent rows from the bottom of 

Table 3 because this would imply that {  for all 9,0.8;0} {27 ,0.5;0}z z; 0.z >   With nine choice 

tasks (or rows in Table 3) and two relevant feasible choices for each task (A or B*), there are in total 

                                                 
 
8 We are grateful to Nathaniel Wilcox for generous advice about this approach to data analysis and for 
supplying SAS code.  
9 Straightforward extension of the proof in appendix A.1 to apply to the case of “seven or more adjacent choices 
of B*” is done as follows: in statement (a.5), replace 1-f(0.5) with f(0.8) – f(0.5) and then  complete the 
remaining steps in the proof. 
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512 choice patterns but only four patterns that would clearly imply implausible risk aversion in the 

large. These four patterns are reported in the right column of Table 5.  

Choice probabilities are assumed to deviate from 1 or 0 by a constant error rate ε  that is the 

same for all subjects and all decision tasks, as in Harless and Camerer (1994). Thus if B* is preferred  

to A then Prob(choose B*) = 1 ε−  and if B* is not preferred to A then Prob(choose B*) = ε , where 

0.5.ε <  The error rate model postulates that a subject with real preferences for B* (respectively A) 

over A (respectively B*) in all nine decision rows could nevertheless be observed to have chosen the 

other option in some rows. For example, the model assumes that a subject with underlying preferences 

[B*,B*,B*,B*,B*,B*,B*,B*,B*] could, instead, choose a different pattern such as 

[B*,B*,A,A,B*,B*,B*,B*,B*], an event with probability 2 2 5(1 ) (1 )ε ε ε− − . 

Consider the four “alternative stochastic types” in the right column of Table 5, that clearly 

imply implausible risk aversion in the large for dual theory, and their mirror images in the left (“null 

stochastic types”) column that are not subject to the calibration. Using the error rate model, we 

estimate the fraction of subjects with choice patterns consistent with the “alternative stochastic types.” 

The maximum likelihood point estimate of the proportion of subjects whose preferences are 

characterized by the four alternative patterns is 0.86, with Wald 90 percent confidence interval (0.73, 

0.99). In this way, we conclude that the percentage of the subjects in the probability transformation 

experiment who made choices for which dual theory implies implausible large stakes risk aversion is 

at least 73 percent and as high as 99 percent. The maximum likelihood point estimate of the error rate 

is 0.216 and the log likelihood is -163.86. 

Next, consider another model that includes alternative stochastic types with B* entries in the 

bottom six decision rows of Table 3 and for which the prediction is  { ,  or 

.  The total number of null and alternative patterns then doubles, from eight (considered above) 

to 16.  For this model, the point estimate of the proportion of subjects with preferences that are subject 

to the calibration critique is 0.85, with Wald 90-percent confidence interval (0.73, 0.98). The 

maximum likelihood point estimate of the error rate (0.14) is lower than for the eight-type model and 

the log likelihood value (-136.05) is larger. The likelihood ratio test rejects the model with eight 

patterns in favor of the one with 16 patterns. 

0.9;0} {9 ,0.5;0}z z;

9k =
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5.3  Implications of the Data for Cumulative Prospect Theory and Rank Dependent Utility Theory 

Corollary 1 applies to cumulative prospect theory and rank dependent utility theory. Using the notation 

in functional (6) and Corollary 1, the choice patterns included in “alternative stochastic types” in Table 

5 have known calibration implications for these theories so long as the condition ( ) / ( ) 2cx xυ υ >  is 

satisfied. In the experiment,  and 40cx = 10x = . The condition (40) / (10) 2υ υ >  is satisfied by the 

value function in Tversky and Kahneman (1992, p. 311), hence similar conclusions to those stated for 

dual theory of expected utility in section 5.2 apply here as well (although the k-values will here depend 

on the ratio (40) / (10)υ υ ). 

 

5.4 Implications of the Data for Expected Utility Theory 

Using the expected utility functional in statement (7), it is straightforward to show that expected utility 

theory implies that an agent’s preference for option A or option B in any row of Table 3 depends only 

on whether (10)ϕ  is larger or smaller than 0.5 (0) 0.5 (40)ϕ ϕ+ . This comparison is the same for all 

rows in Table 3; therefore there is no concavity calibration implication for expected utility theory from 

this experiment. However, expected utility theory can be tested with data from the experiment because 

the theory predicts that an agent will always choose the same option. Data from the experiment reveal 

that 28 out of the 30 (or 94 percent) of the subjects in the experiment made choices that were 

inconsistent with this prediction. A probit panel regression of individual choices supports the 

conclusion that the prediction “always choose the same option” cannot account for observed behavior 

in this experiment. This prediction implies that the estimated coefficient for the variable “row” 

(corresponding to the row in Table 3) should be insignificant. On the contrary the probit panel 

regression with random effects reports a significant row effect; the estimated coefficient is 0.23 with 

standard error 0.03 and p-value 0.00.  

The error rate model can be used to address the question whether the two choice patterns 

consistent with expected utility theory are as consistent with the data as the eight choice patterns in 

Table 5. Applying the error rate model to the two expected utility patterns [A,A,A,A,A,A,A,A,A] and  

[B*,B*,B*,B*,B*,B*,B*,B*,B*] yields a point estimate for the error rate of 0.33 with log likelihood -



 19

177.57. As reported above, the log likelihood for the eight choice patterns in Table 5 is -163.86. The 

likelihood ratio test rejects the two-pattern expected utility model in favor of the eight-pattern model at 

5 percent significance level.  

 

5.5 Implications of the Data for Expected Value Theory 

In row j  of Table 3, the expected value of option A is €( 40 4 j− ) while the expected value of option 

B is €( 38 4 j− ). Hence a risk neutral agent will choose option A over option B in all rows. The data 

show that 28 out of 30 (or 93%) of the subjects made choices inconsistent with this implication of risk 

neutral preferences. The above probit regression test of expected utility theory also implies rejection of 

the testable implication of expected value theory. The error rate model can be used to address the 

question whether the one choice pattern consistent with expected value theory is as consistent with the 

data as are the eight choice patterns in Table 5. Applying the error rate model to the one expected 

value choice pattern [A,A,A,A,A,A,A,A,A] yields log likelihood -187.15. The likelihood ratio test 

rejects expected value theory in favor of the eight pattern model in Table 5 at 1 percent significance.  

 

6. Calcutta Experiment with Payoff Transformation Theories 

 An experiment with money payoff transformation theories was conducted at the Indian Statistical 

Institute in Calcutta during the summer of 2004. The subjects were resident students at the institute. 

Two sessions were run, each with 15 subjects. In this experiment, all payoffs were denominated in 

Indian rupees. 

 

6.1 Experimental Design 

In each experiment session a subject was asked to perform two tasks. For the first task, subjects were 

asked to make six choices between a certain amount of money x  rupees + 20 rupees and a binary 

lottery { x  rupees + 50 rupees, 0.5; x rupees} for values of x  from the set {100, 1K, 2K, 4K, 5K, 6K}, 

where K = 1,000. Subjects were asked to choose among option A (the risky lottery), option B (the 

certain amount of money), and option I (indifference). The alternatives given to the subjects are 

presented in Table 6. The second task was completion of a questionnaire including questions about 
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amounts and sources of income. Appendix B.2 contains detailed information on the protocol of this 

experiment. 

 

6.2  Economic Significance of the Certain Incomes and Lottery Risks 

The exchange rate between the Indian rupee and the U.S. dollar at the time the Calcutta experiment 

was run was about 42 to 1. This exchange rate can be used to convert the rupee payoffs discussed 

above into dollars. Doing that would not provide very relevant information for judging the economic 

significance to the subjects of the certain payoffs and risks involved in the Calcutta experiment 

because there are good reasons for predicting that none of the subjects would convert their rupee 

payoffs into dollars and spend them in U.S. markets. Better information on the economic significance 

of the payoffs to subjects is provided by comparing the rupee payoffs in the experiment to rupee-

denominated monthly stipends of the student subjects and rupee-denominated prices of commodities 

available for purchase by students residing in Calcutta. 

 The student subjects’ incomes were in the form of scholarships that paid stipends of 1,200-

1,500 rupees per month in addition to the standard tuition waiver that each received. This means that 

the highest certain payoff used in the experiment (6,000 rupees) was equal to four or five months’ 

stipend for the subjects. The daily rate of pay for the students was 40 – 50 rupees. This means that the 

size of the risk involved in the lotteries (the difference between the high and low payoffs) was greater 

than or equal to a full day’s pay.  

 A sample of commodity prices in Calcutta at the time of the experiment (summer 2004) is 

reported in Table 7. Prices of food items are reported in number of rupees per kilogram. There are 

2.205 pounds per kilogram and 16 ounces in a pound, hence there are 35.28 ounces per kilogram. The 

U.S. Department of Agriculture’s food pyramid guide defines a “serving” of meat, poultry, or fish as 

consisting of 2 – 3 ounces. This implies that there are about 15 servings in a kilogram of these food 

items. As reported in Table 7, for example, we observed prices for poultry of 45 – 50 rupees per 

kilogram. This implies that the size of the risk involved in the lotteries (50 rupees) was equivalent to 

15 servings of poultry. The price of a moderate quality restaurant meal was 15 – 35 rupees per person. 

This implies that the 50 rupee risk in the experiment lotteries was the equivalent of about 1.5 – 3 
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moderate quality restaurant meals. The observed prices for local bus tickets were 3 – 4.5 rupees per 

ticket. This implies that the 50 rupee risk in the experiment lotteries was the equivalent of about 14 bus 

tickets. 

 

6.3 Implications of the Data for Expected Utility Theory, Rank Dependent Utility Theory, and 

Original Cumulative Prospect Theory 

The “if” statement in P(2*) in Proposition 2 involves weak preference for option B over option A. 

Therefore, in all tests for the presence of choice patterns that imply implausible risk aversion in the 

large, we aggregate choices of option B with choices of option I (indifference) and denote the 

aggregated choice category as B*. We begin with a conservative test for incidence in the data of 

patterns of choices that, according to Corollary 2, imply implausible risk aversion in the large with 

expected utility theory, cumulative prospect theory, and rank dependent utility theory. The 

conservative test procedure admits no errors in observed choices; it simply counts the number of 

subjects whose choices exactly fit patterns that imply implausible risk aversion in the large. 

Subsequently, we apply a model that allows errors in observed choices.  

There are data for 30 subjects. Nine subjects never rejected a risky lottery whereas five 

subjects rejected the risky lottery only in the first decision task. Eight out of 30 (or 27 percent of the) 

subjects revealed an interval of risk aversion with length at least 3.9K. The expected utility theory, 

rank dependent utility theory, and cumulative prospect theory calibration implications for these 

individuals are reported in Table 8. Figures reported in the table show implausible risk aversion 

calibration implications for these eight individuals.  

We use the error rate model to draw statistical conclusions from these data. Recall that this 

type of analysis takes into account that a subject with real preferences for option B* rather than option 

A in all six rows could nevertheless be observed to have chosen B* in five (or fewer) out of six rows. 

That is, the model assumes that a subject with real underlying preferences such as  

[B*,B*,B*,B*,B*,B*] could, instead, choose a different pattern, say [B*,B*,B*,A,B*,B*], an event 

with probability 3(1 ) (1 )2ε ε ε− − , where ε  is an error rate.   
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The main empirical question is whether a significant fraction of subjects in this experiment 

have underlying preferences for which the theory predicts implausible risk aversion with large stakes 

risky lotteries. We here define large stakes risk aversion as “implausible” if it involves predictions of 

the type reported in Table 8, for example the prediction (in the middle row and right column) that an 

agent would prefer 3,000 for sure to the 50/50 lottery that pays 2,000 or 400,000. Given the parametric 

configuration of our experiment, expected utility theory, cumulative prospect theory and rank 

dependent utility theory would, according to Corollary 2, imply implausible risk aversion for large 

stakes risks for any pattern of choices of option B* rather than option A in at least four adjacent rows 

in Table 6. We consider two models. Model I consists of the choice patterns in the top three rows of 

Table 9. The alternative stochastic types in the top three rows include all choice patterns containing at 

least four adjacent B* entries, including the last entry, and at most one switch between the alternatives 

A and B*. The restriction to only one switch does not allow patterns of choices inconsistent with non-

monotonic risk aversion in the certain payoff amount .x  The alternative patterns imply implausible 

risk aversion following from calibrations of the type derived in Proposition 2 and Corollary 2. The 

mirror image patterns reported in the first three rows of the null stochastic types column present choice 

patterns that are not subject to the above calibrations. Model I assumes that underlying real preferences 

are one of these six types, and we ask the question what fraction of the population is of the three 

alternative types.   

The maximum likelihood point estimate of the proportion of subjects whose preferences are 

characterized by the three alternative patterns in Model I is 0.397, with Wald 90 percent confidence 

interval (0.196, 0.598). In this way, we conclude that the percentage of subjects in the Calcutta payoff 

transformation experiment who made choices for which expected utility theory, cumulative prospect 

theory and rank dependent utility theory imply implausible large stakes risk aversion is at least 19.6 

percent and as high as 59.8 percent. The maximum likelihood point estimate of the error rate is 0.18 

and the log likelihood is -109.47. 

Next consider Model II that includes all 16 choice patterns in Table 9. Unlike in Model I, the  

stochastic types in Model II do include some patterns with more than one switch between A and B* 

(that is, risk aversion that is non-monotonic in the certain payoff x ). The alternative stochastic types 
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of Model 2 include choice patterns with at least four adjacent B* entries in any position in the 

sequence of six choices. The point estimate of the proportion of subjects whose choices are 

characterized by the eight alternative stochastic types in Model II is 0.495, with Wald 90 percent 

confidence interval (0.289, 0.702). Therefore, this estimation implies that the percentage of subjects 

for whom the three theories imply implausible large stakes risk aversion is at least 28.9 percent and at 

most 70.2 percent. The maximum likelihood point estimate of the error rate for Model II is 0.107 and 

the log likelihood is -101.75. The likelihood ratio test rejects Model II in favor of Model I at five 

percent significance. In this way, the data provide more support for the relatively parsimonious Model 

I, with point estimate of 39.7 percent of subjects for whom the three theories imply implausible large 

stakes risk aversion. 

 

6.4 Implications of the Data for Dual Theory and Prospect Theory with Editing of Reference Points 

The utility functional in statement (1) for dual theory gives us the necessary and sufficient condition 

for rejection of the risky lottery { 50,0.5; }x x+ , in favor of 20x +  for sure, for some specific value 

of  x  in the Calcutta experiment: 

(9) 20 (0.5) [ 50] [ (1) (0.5)]x f x f f+ > × + + − × x ,  

where again f  is the dual theory transformation function for decumulative probabilities. Since in the 

dual theory  and , statement (9) implies (0f ) 0= (1) 1f = (0.5) 20 / 50f < , which is independent of 

the value of x . Therefore, dual theory implies that an agent will reject the risky lottery 

{ 50,0.5; }x x+  for all positive value of x  if and only if he does so for one positive value of x . Hence 

dual theory predicts that a subject will choose the same option in every row of Table 6.  

In their development of cumulative prospect theory, Kahneman and Tversky (1992) dropped 

some of the elements of the original (“non-cumulative”) version of prospect theory (Kahneman and 

Tversky, 1979). One element of the original version of prospect theory, known as “editing,” can be 

described as follows. In comparing two prospects, an individual is said to look for common amounts in 

the payoffs, to disregard (or “edit”) those common amounts, and then compare the remaining distinct 

payoff terms in order to construct a preference ordering of the prospects. Some recent applications of 



 24

cumulative prospect theory (Kőszegi and Rabin, 2006, 2007; Schmidt, Starmer, and Sugden, 

forthcoming) have reintroduced editing in the form of reference point payoffs that differ from the zero-

payoff reference point used by Tversky and Kahneman (1992). Non-zero reference points have 

implications for application of cumulative prospect theory to our experiments. For example, the 

concavity calibration in Corollary 2 is based on the supposition that an agent prefers the certain 

amount x a+  to the lottery { , ; }x b p x+  for all ].,[ Mmx∈  But x  is a common amount in the 

certain payoff, x a+  and both possible payoffs in the lottery { , ; }x b p x+ . If this common (or 

“reference point”) amount x  is edited, that is eliminated from all payoffs, then all comparisons are 

between the certain amount  and the single lottery { ,  and there remains no interval [ ,  

over which to calibrate. In this way, editing of reference point payoffs can immunize prospect theory 

to critique by calibration of payoff transformation functions (Wakker, 2005).

a ;0}b p ]m M

10  

Editing of common amounts x  from payoffs does not immunize prospect theory to being 

tested with data from payoff transformation experiments, as can be seen by applying editing to the 

lotteries and certain payoffs used in the Calcutta experiment. If we perform editing by subtracting from 

all payoffs in each row of Table 6 the amounts that set the lower lottery payoff in all rows in the option 

A column equal to 0 then the resulting comparison in every row is between the lottery {5 and 

the certain payoff 20. Alternatively, if we perform editing by subtracting from all payoffs in each row 

the amounts that set the certain payoff in the option B column equal to 0 then the resulting comparison 

in every row is between the lottery {

0,0.5;0}

30,0.5; 20}− and the certain payoff 0. Whichever way editing is 

applied it has the same implication: that an agent will view all rows in Table 6 as involving exactly the 

same choice and hence make the same decision. Therefore, this version of prospect theory has the 

same testable implication as dual theory of expected utility for data from the Calcutta experiment. 

 Both of these two theories predict that an agent will reject the risky lottery { 50,0.5; }x x+

20

 for 

one positive value of  if and only if he does so for all positive values of . The data reveal 

that 77 percent of the subjects made choices that are inconsistent with this prediction. A probit panel 

20x+ x+

                                                 
 
10 Editing of reference point payoffs does not immunize prospect theory to critique by calibration of probability 
transformation functions, as in Corollary 1. 
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regression of the data supports the conclusion that these two models cannot account for observed  

behavior in this experiment. The prediction is that the estimated coefficient for the row should not be 

significant. On the contrary, the probit panel regression with individual-subject random effects yields a 

parameter estimate of -0.12 for the row number variable` that is significantly different from 0 at 6 

percent significance level. Furthermore, the only choice patterns consistent with these two theories are 

[A,A,A,A,A,A] and [B*,B*,B*,B*,B*,B*]. Maximum likelihood estimation of the error rate model 

with only these two types yields an error rate of 0.25 and a log likelihood of  -114.51. The log 

likelihood ratio test rejects this model at 5% significance level in favor of Model I, reported in the  

previous section, that allows for six stochastic types. Recall that Model I is consistent with the 

original version of cumulative prospect theory with constant, zero-income reference point. Therefore, 

one interesting interpretation of this test is that it implies rejection of the variable reference point 

version of prospect theory in favor of the original version with zero-income reference point.  

 

6.5  Implications of the Data for Expected Value Theory 

The choice faced by a subject in a row of Table 6 is between an option A lottery { 50,0.5; }x x+

25x +

 and 

an option B certain amount . Since the expected value of an option A lottery is , a risk 

neutral agent will prefer option A to option B in every row of the table. The data show that 80 percent 

(or 24/30) of the subjects made choices inconsistent with the prediction “always choose option A.”  

20x +

 The above probit regression test for dual theory and cumulative prospect theory with variable 

reference point also implies rejection of the testable implication of expected value theory. The error 

rate model can be used to address the question whether the one choice pattern consistent with expected 

value theory is as consistent with the data as are the six choice patterns in Model I. Estimation of the 

error rate model for the one expected value choice pattern [A,A,A,A,A,A] yields log likelihood -

122.88. The likelihood ratio test rejects the implication of expected value theory in favor of Model I at 

1 percent significance.  
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7. Magdeburg Contingent Payoff (Casino) Experiment with Payoff Transformation Theories 

An experiment was conducted in Magdeburg in the winter of 2004 with contingent money payoffs. 

This experiment was conducted at the MAX-Lab of the Otto-von-Guericke-University of Magdeburg 

and the Magdeburg Casino. The subjects were adults who were older than typical students. All payoffs 

were denominated in euros (€).  

 

 7.1. Experimental Design 

There were two sessions, one with 20 subjects and the other with 22. The experiment had three parts 

consisting of Step 1, Step 2, and a questionnaire. In Step 1 all subjects were asked to choose between 

option A, a risky lottery {€ ,0.5; € }x y  in which 210,y x= +  and option B, the certain amount of 

money, €z , where  and where 100= +z x z  took values from {3K, 9K, 50K, 70K, 90K, 110K} and K 

= 1,000. These six decision tasks are reported in Table 10.11   Step 2 involved bets by an experimenter 

on an American roulette wheel at the Magdeburg Casino, the realization of which determined whether 

the euro payments determined in Step 1 were made in real euros.  

 Step 1 took place in the MAX-Lab in Magdeburg and lasted about 45 minutes. The 

participants made their decisions in well separated cubicles. First the instructions of Step 1 and the 

choices were given to the subjects. After the subjects completed Step 1 they got a questionnaire. After 

having completed the questionnaire they received the instructions for Step 2. In Step 1 the participants 

were told that whether their payoffs would be hypothetical or real depended on a condition which 

would be described later in Step 2; they were not informed of use of the Casino until they had 

completed their Step 1 decisions.  

 In Step 2 the payoff procedure was described. After the instructions for Step 2 were read by 

the participants, they were given the opportunity to change the decisions they made in Step 1. No one 

changed his or her decisions. Money payoff to a subject was conditional on an experimenter winning a 

                                                 
 
11 There was an additional, different type of decision that subjects were asked to make in a task 7. This task was 
implemented incorrectly in one of the two sessions so we do not use the data. The subsequent implementation of 
task 7 could not affect the subjects’ decisions in tasks 1-6 because they had completed their responses to tasks 1- 
6 before they were shown task 7. Task 7 data are available upon request to the authors. 



 27

gamble in the casino. Based on conditional rationality, all choices had the same chance to become real 

and the condition should not influence decisions. 

The payoff contingency was implemented in the following way. For each participant the 

experimenter placed €90 on the number 19 on one of the (four American) roulette wheels at the 

Magdeburg Casino. The probability that this bet wins is 1/38. If the bet wins, it pays 35 to 1. If the first 

bet won, then the experimenter would bet all of the winnings on the number 23. If both the first and 

 second bet won, then the payoff would be €(35 ×  35 ×  90) = €110,250, which would provide enough 

money to make it feasible to pay any of the amounts involved in the Step 1 decision tasks.12  If the 

casino bets placed for a subject paid off, one of that subject’s Step 1 decisions would be paid in real 

euros, otherwise no choice would be paid. The decision that would be paid would be selected 

randomly by drawing a ball from an urn containing balls with numbers 1 to 7. The number on the ball 

would determine the decision task to be paid. If a subject had chosen indifference then a coin flip 

would determine whether the certain amount was paid or the lottery would be played. We informed the 

participants that any money resulting from casino bets that was not paid (because the subject’s 

decision randomly selected for payoff involved amounts less than €110,250) would be used for subject 

payments in other experiments. Some more details of the protocol are explained in appendix B.3. 

This experiment has no implications for rank dependent utility theory or cumulative prospect 

theory with a probability transformation function such that (0.5) 0.476h <  (for example, 

, as in Kahneman and Tversky, 1992) since  for such values of  the assumption 

 of Corollary 2 is not satisfied by the lottery with 

(0.5) 0.42h =

( )h p b a>

(0.5)h

210b =  and 100a = . The data do have 

implications for expected utility theory because the assumption pb > a  in Proposition 2 is satisfied. 

 

7.2  Implications of the Data for Expected Utility Theory  

There were in total 42 subjects in this experiment. Eleven subjects never rejected a risky lottery. There 

were 20 subjects who revealed an interval of risk aversion with length at least 40K. Proposition 2 

                                                 
 
12 It is not clear, a priori, that subjects perceive large contingent payoffs, involving such low probabilities, 
differently than hypothetical payoffs.  
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 implies implausible large-stakes risk aversion for these 20 individuals, as reported in Table 11. Entries 

in Table 11 are interpreted as follows. Row 1, for example, reports that seven subjects (NOBS = 7) 

rejected the risky lottery {  in favor of the certain payoff 100,0.5; 110}x x− + x , or reported 

indifference, for all values of  between 3K and 110K. According to Proposition 2, expected 

utility theory implies that an agent with these risk preferences would also prefer the certain payoff 9K 

(= 3K+ 6K) to the 50/50 lottery that pays 3K or  . The fourth row of Table 11 reports that 

eight subjects chose the certain payoff or indifference for all values of 

100x +

250.21 10×

x +100 between 50K and 110K  

According to Proposition 2, expected utility theory implies that an agent with these risk preferences 

would prefer the certain payoff 56K (= 50K+6K)  to the 50/50 lottery that pays 50K or . 1610×0.11

 We apply error rate models to these data, as follows. Given the large interval for calibration, 

[3K,110K] in this experiment, three or more adjacent choices of B* can imply implausible risk 

aversion according to Proposition 2. Therefore, the (single-switch) Model I null pattern used here 

includes the choice patterns in the right column and top three rows of Table 9 plus the pattern 

[A,A,A,B*,B*,B*]`. Maximum likelihood estimation for this model yields a point estimate of the 

proportion of subjects with choice patterns included in alternative stochastic types of 0.538 and Wald 

90 percent confidence interval (0.392, 0.683). In this way, we conclude that at least 39.2 percent and at 

most 68.3 percent of the subjects made choices for which expected utility theory implies implausible 

large stakes risk aversion. The estimated error rate for this model is 0.057 and the log likelihood is -

112.99. 

 Since with these data only three adjacent choices of *B  can imply implausible large stakes 

risk aversion, the version of Model II (that allows more than one switch between A and B*) includes 

more than the 16 patterns in Table 9. This version of Model II includes 34 patterns. The estimated 

proportion of subjects with the 17 alternative patterns in this version of Model II is 0.538 with 

estimated Wald 90 percent confidence interval (0.384, 0.692). The estimated error rate for Model II is 

0.031 and the log likelihood is -107.16. For these data, the log likelihood ratio test fails to reject Model 

I in favor of Model II at 5 percent significance; hence the data provide support for use of the relatively 

parsimonious Model I with point estimate of 53.8 percent of the subjects for whom expected utility 

theory implies implausible large stakes risk aversion.  
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7.3  Implications of the Data for Dual Theory and Prospect Theory with Editing of Reference Points  

Section 6.4 contains explanations that dual theory and prospect theory with editing of reference points 

imply that a subject will make the same choice of the sure thing or the lottery in all responses in the 

Calcutta experiment. Similar arguments show that these theories imply that a subject will make the 

same choice in all responses in the Magdeburg Casino experiment. The data reveal that 24 out of 42 

(or 57 percent) of the subjects made choices inconsistent with this prediction. If a subject were to 

choose the same option in all rows, as predicted by dual theory and prospect theory with variable 

reference point, then the subject’s choices will be the same in all rows of Table 11 and hence invariant 

with the amount of the certain payoff. This implies that the row number variable will be insignificant 

in a probit regression with the data. A probit panel regression with individual-subject random effects 

yields a parameter estimate of 0.33 for the row variable that is significantly different from 0 at 1 

percent significance level.  

The only choice patterns consistent with these two theories are [A,A,A,A,A,A] and 

[B*,B*,B*,B*,B*,B*]. Maximum likelihood estimation of the error rate model with only these two 

types yields an error rate 0.21 and a log likelihood of  -151.36. The likelihood ratio test rejects  this 

two-type model, at 5% significance level, in favor of the four row version of Model I, reported in the 

previous section, that allows for eight stochastic types. Recall that the aggregation of null and 

alternative patterns in Model I is consistent with the original version of cumulative prospect theory 

with constant, zero-income reference point. Therefore,  the variable reference point version of prospect 

theory is again rejected in favor of the original version with zero-income reference point.  

 

7.4  Implications of the Data for Expected Value Theory 

The choice faced by a subject in a row of Table 10 is between an option A lottery with expected value 

 and an option B certain payoff 105x + 100x + . Therefore, a risk neutral agent will prefer option A in 

every row. The data show that 32 out of the 42 (or 76 percent) of the subjects made choices 

inconsistent with this implication of risk neutrality. The above probit regression test for dual theory 

and cumulative prospect theory with variable reference point also implies rejection of the testable 

implication of expected value theory. The error rate model can be used to address the question whether 
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the one choice pattern consistent with expected value theory is as consistent with the data as are the 

choice patterns in Model I. Estimation of the error rate model for the one expected value choice pattern 

[A,A,A,A,A,A] yields log likelihood -174.67. The likelihood ratio test rejects this implication of 

expected value theory in favor of Model I reported above at 1 percent significance.  

 

8. Is There a Plausible Decision Theory for Risky Environments? 

Prominent theories of decision making for risky environments model individuals’ risk averse 

preferences over lotteries with nonlinear transformation of payoffs or nonlinear transformation of 

probabilities or transformations of both payoffs and probabilities. Previous calibration literature has 

focused on the possibly-implausible implications of modeling risk aversion with nonlinear 

transformation of payoffs. This paper provides a dual critique that focuses on implications of nonlinear 

transformation of probabilities as well as nonlinear transformation of payoffs. Previous literature has 

offered no data supporting empirical relevance of supposed patterns of risk aversion that have 

calibration implications. This paper provides data from two distinct types of experiments with designs 

that incorporate two different patterns of risk aversion that, respectively, have implications for theories 

that transform probabilities and theories that transform payoffs. The two types of supposed patterns of 

risk aversion and their implications are stated in the two propositions and their corollaries. 

Proposition 1 derives calibration implications of modeling risk aversion solely with nonlinear 

transformation of probabilities, as in dual theory of expected utility. The pattern of risk aversion that is 

postulated in Proposition 1 has no calibration implications for expected utility theory (the theory that is 

dual to Yarri’s (1987) dual theory of expected utlility).  Corollary 1 extends this type of calibration to 

theories, such as rank dependent utility theory and cumulative prospect theory, that model risk-

avoiding behavior with nonlinear transformations of both probabilities and payoffs. Proposition 2 

derives implications of modeling risk aversion solely with nonlinear transformation of payoffs, as in 

expected utility theory. The pattern of risk aversion that is postulated in Proposition 2 has no 

calibration implications for dual theory of expected utility. Corollary 2 extends this type of calibration 

to theories that incorporate nonlinear transformations of both payoffs and probabilities, for example 

rank dependent utility theory and cumulative prospect theory. 
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  We report an experiment run in Magdeburg, Germany with euro payoffs. Data from this 

experiment and the probability transformation calibration in Proposition 1 support the conclusion that 

a large proportion of the subjects exhibit patterns of risk aversion that have implausible implications 

for risk aversion in the large according to dual theory of expected utility theory. Data from the 

experiment and Corollary 1 lead to the conclusion of implausible large stakes risk aversion for rank 

dependent utility theory and cumulative prospect theory with (money transformation or) value 

functions that satisfy the condition in the corollary, for example ones similar to that in Tversky  and 

Kahneman (1992).13  The design of this experiment has no calibration implication for theories that do 

not transform probabilities, but such theories can still be tested with data from the experiment. 

Testable implications for expected utility theory and expected value theory are inconsistent with data 

for large proportions of the subjects. 

We report an experiment run in Calcutta, India with rupee payoffs. Data from this experiment 

and payoff transformation calibrations in Proposition 2 and Corollary 2 support the conclusion that a 

significant proportion of the subjects exhibit patterns of risk aversion that have implausible 

implications if one models their behavior with expected utility theory, rank dependent utility theory, or 

cumulative prospect theory with zero-income reference point. Although prospect theory with “editing” 

of variable reference point payoffs can be immunized to problems from payoff transformation 

calibration, this theory can still be tested with data from the experiment. The testable implication of 

variable reference point editing is the same as for dual theory of expected utility; this implication is 

inconsistent with data for most of the subjects. The data are also mainly inconsistent with the testable 

implication of expected value theory. 

Finally, we report an experiment run in Magdeburg with contingent payoffs of large amounts 

of euros. Data from this experiment and Proposition 2 imply implausible risk aversion in the large for 

about half of the subjects if one models their behavior with expected utility theory. Data for a majority 

of subjects in this experiment are also inconsistent with testable predictions of dual theory of expected 

                                                 
 
13 Estimated value functions differ across empirical applications of cumulative prospect theory. Corollary 1 
provides guidance for experimental design for any given value function.  
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utility and prospect theory with editing of variable reference point payoffs. In addition, data for a 

majority of subjects are inconsistent with the testable implication of expected value theory. 

The two types of calibration propositions and their corollaries show how theories of decision 

under risk can have implausible implications regardless of whether they model risk-avoiding 

preferences with nonlinear transformations of payoffs, nonlinear transformation of probabilities, or 

both types of transformations. The experiment data provide support for the suppositions that underlie 

the calibrations. Further empirical testing is clearly needed. But the limited data now available provide 

support for empirical validity of risk aversion patterns underlying the calibrations. Accordingly, we 

conclude that the answer to the question about whether there exists a plausible theory for decision 

under risk may be “no.” 
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Table 1. Calibrations for Probability Transformations  

100 { , 0.5;0}G;  

Rejection 

Intervals 

First DU 

Calibration 

(cx = 210, x=100) 

Second DU 

Calibration* 

(cx = 250, x=100) 

Third DU 

Calibration 

(cx = 40, x=10) 

PT & RD Calibration 

with υ (y) = y0.88 

(cx = 40, x=10) 

N G G G G     

5 260 859 24,400 14,229 

10 350 586 0.59×107 0.19×107 

50 11,830 0.63×10 11 0.71×1027 0.29 ×1024 

100 0.13 ×107 0.40×1020 0.51×1051 0.86×1045 

200 0.18×1011 0.16×1038 0.26×1099 0.74×1088 

500 0.49×1023 0.11×1091 0.36×10242 0.48×10217 

*figures of G reported in this column are the same for a risk aversion pattern with cx=50 and x=20 
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Table 2. Calibrations for Payoff Transformations 

3, 000 { , 0.5;900}G;  

Rejection 

Intervals 

[900,M] 

First EU 

Calibration 

(b=210, a=100) 

Second EU 

Calibration 

(b=250, a=100) 

First PT & RD 

Calibration 

(b=250, a=100) 

Third EU 

Calibration 

(b=50, a=20) 

Second PT & 

RD Calibration 

(b=50, a=20) 

M G G G G G     

 

5000 8,000 301,000 8,000 0.12×1017 564,000 

6000 10,000 0.15×107 10,000 0.4×1020 0.29×107 

8000 15,000 0.38×108 13,000 0.44×1027 0.79×108 

10000 24,000 0.98×109 18,000 0.49×1034 0.21×1010 

30000 0.11×109 0.12×1024 0.46×107 0.13×10105 0.5×1024 

50000 0.1×1013 0.14×1038 0.34×1010 0.37×10175 0.1×1039 
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Table 3. Choice Alternatives in the Magdeburg Probability Transformation Experiment 
 
 

Row Option A Option B My Choice 

 0 Euro 40 Euros 0 Euro 10 Euros 40 Euros  

1 1/10  9/10  0/10  2/10 8/10 A B I 

2 2/10 8/10  1/10  2/10 7/10 A B I 

3 3/10  7/10 2/10  2/10 6/10 A B I 

4 4/10  6/10  3/10  2/10 5/10 A B I 

5 5/10  5/10  4/10  2/10 4/10 A B I 

6 6/10  4/10  5/10  2/10 3/10 A B I 

7 7/10  3/10  6/10  2/10 2/10 A B I 

8 8/10  2/10  7/10  2/10 1/10 A B I 

9 9/10  1/10  8/10  2/10 0/10 A B I 
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Table 4. Large-Stakes Risk Aversion Implied by Probability  
Calibration for Magdeburg Subjects 

 
 

Subject Dual Theory Predictions 

1, 8, 9, 13, 21  {z,0.7; 0} ≻ { 9z,0.5; 0} 

22  {z,0.8; 0} ≻ {27z,0.5; 0} 

17  {z,0.9; 0} ≻ {81z,0.5; 0} 

7 {z, 1; 0} ≻ {244z,0.5; 0} 

4 {z, 1; 0} ≻ { 15z,0.5; 0} 

5 {z, 1; 0} ≻ { 19z,0.5; 0} 

11 {z, 1; 0} ≻ { 99z,0.5; 0} 

26 {z, 1; 0} ≻ { 17z,0.5; 0} 

30 {z, 1; 0} ≻ { 82z,0.5; 0} 
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Table 5. Error Rate Model for Probability Calibration 
 
 

Null Stochastic Types Alternative Stochastic Types  

[A,A,A,A,A,A,A,A,A] [B*,B*,B*,B*,B*,B*,B*,B,*B*] 

[B*,A,A,A,A,A,A,A,A] [A,B*,B*,B*,B*,B*,B*,B*,B*] 

[A,B*,A,A,A,A,A,A,A] [B*,A,B*,B*,B*,B*,B*,B*,B*] 

[B*,B*,A,A,A,A,A,A,A] [A,A,B*,B*,B*,B*,B*,B*,B*] 

 
 
 
 
 

Table 6. Choice Alternatives in the Calcutta Experiment  
 
 

Option A Option B My Choice 

80 or 130 100 A B I 

980 or 1030 1000 A B I 

1980 or 2030 2000 A B I 

3980 or 4030 4000 A B I 

4980 or 5030 5000 A B I 

5980 or 6030 6000 A B I 
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Table 7. Calcutta Price Survey Data 
 
 

Commonly used items for day-to-day living in Calcutta Average Price range in Rupees 

Food Items* 

Poultry 

Fish 

Red meat 

Potatoes 

Onions 

Tomatoes 

Carrots 

Rice 

Lentils 

 

45-50 

25-50 

150 

7 

10-12 

8-10 

8-10 

11 

30 

Public Transport 

Buses 

Local trains 

 

 

3-4.5/ticket 

5-10/ticket 

Eating out 

Average restaurants 

Expensive restaurants 

Five-star hotels/restaurants 

 

15-35/person 

65-100/person 

500-1000/person 

* Prices are in rupees per kilogram; 1 kilogram = 2.205 pounds 
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Table 8. Large-Stakes Risk Aversion Implied by Payoff Calibration for Calcutta Subjects 

 

NOBS 

(30) 

Observed Rejection 

Intervals (m, M) 

G Values for EU  

1 { ,0.5;EUm K m G}+ ;  

G Values for CPT & RDEU 

,1 { , 0.5;CP RDm K m G}+ ;  

2 (1K, 5K) 0.12×1017 0.399×106 

4 (2K, 6K) 0.12×1017 0.4×106 

2 (100, 4K) 0.54×1016 0.338×106 

 

 
Table 9. Error Rate Model for Payoff Calibration 

 
 

 
 

Model 

 

Null Stochastic Types 
 

Alternative Stochastic Types  

[A,A,A,A,A,A] [B*,B*,B*,B*,B*,B*] 

[B*,A,A,A,A,A} [A,B*,B*,B*,B*,B*] 

 

 

             Model I 

 [B*,B*,A,A,A,A] [A,A,B*,B*,B*,B*] 

[A,B*A,A,A,A] [B*,A,B*,B*,B*,B*] 

[A,A,A,A,B*,B*] [B*,B*,B*,B*,A,A] 

[A,A,A,A,B*,A] [B*,B*,B*,B*,A,B*] 

[A,A,A,A,A,B*] [B*,B*,B*,B*,B*,A] 

 

 

Additional Patterns in 

Model II 

 

[B*,A,A,A,A,B*] [A,B*,B*,B*,B*,A] 

 



 42

 

Table 10. Choice Alternatives in the Magdeburg Payoff Transformation Experiment 
 
  

Option A Option B My Choice 

2,900 or 3,110 3,000 A B I 

8,900 or 9,110 9,000 A B I 

49,900 or 50,110 5,0000 A B I 

69,900 or 70,110 70,000 A B I 

89,900 or 90,110 90,000 A B I 

109,900 or 110,110 110,000 A B I 

 

 

Table 11. Large-Stakes Risk Aversion Implied by Payoff  

Transformations for Magdeburg Subjects 

 

NOBS 

 

Observed Rejection Intervals  

(m, M) 

G Values for EU  

6 { ,0.5;EUm K m G}+ ;  

7 (3K, 110K) 0.21x1025 

1 (3K, 90K) 0.24x1021 

1 (3K, 50K) 0.3x1013 

8 (50K, 110K) 0.11x1016 

1 (50K, 90K) 0.13x1012 

2 (70K, 110K) 0.13x1012 
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Appendix A. Proofs of Propositions and Corollaries 

A.1 Proof of Proposition 1 and Corollary 1 

General result 1. Let a decision theory D represent preferences over lotteries L with “utility 

functional”  

(a.i)    
1 1

( ) [ ( ) ( )] ( )
n n n

k k
j k j k j

U L f p f p v y
= = = +

= −∑ ∑ ∑ j

where (.)f  is the transformation of  decumulative probabilities whereas is the money 

transformation function. Suppose that  

(.)v

(a.ii)   { ,{ , ( 1) / 2 ; ,1 / ;0}cx i n x n− / 2 ;0},cx i n for all 1, 2, , 2 1i n= ⋅⋅⋅ − , and  

(a.iii)  ( ) / ( ) 2v cx v x >

Using notation  we show that getting z for sure is preferred to getting 

 or zero with even odds, where  the function  is  in section 2.1. 

( ) / ( )C v cx v x≡

, ))n1( ( ) (v v z K C− (.,.)K

Proof.  To simplify notation, let 1/ 2nδ = .  First note that, according to theory D, 

{ , ( 1) ; , 2 ;0}cx i xδ δ−   { , ;0},cx iδ for all 1, 2, , 2 1i n= ⋅⋅⋅ −  implies 

(a.1)  [ ]( ) ((1 ) ) ( ) ( ) (( 1) ) ( ) ( ), 1, , 2 1v x f i v cx v x f i v cx f i i nδ δ δ+ + − − ≥ = −…  

which is equivalent to 

(a.2)  [ ]((1 ) ) ( ) ( 1) ( ) (( 1) ) , 1, , 2 1f i f i C f i f i i nδ δ δ δ+ − ≥ − − − = −…  

 Writing inequality (a.2) for  and applying it ( 1, , 2 )i k n+ = … 1k −  other times one has 

  
[ ]
[ ]

(( ) ) (( 1) ) ( 1) (( 1) ) (( 2) )

( 1) ( ) (( 1) )k

f i k f i k C f i k f i k

C f i f i

δ δ δ δ

δ δ

+ − + − ≥ − + − − + − ≥

≥ − − −

…
 

which generalizes as  

(a.3)  [ ]( ) (( 1) ) ( 1) ( ) (( 1) ) , , , 2j if j f j C f i f i j iδ δ δ δ−− − ≥ − − − = … n  

Next, if we show that  

(a.4)   [ ]
1

1

1(0.5) (0.5) (0.5 )
1

in

i
f f f

C
δ

−

=

⎛ ⎞≤ − − ⎜ ⎟−⎝ ⎠
∑ and  

(a.5)    [ ] ( )
1

1 (0.5) (0.5) (0.5 ) 1
n

j

j

f f f Cδ
=

− ≥ − − −∑

then we are done since inequalities (a.4) and (a.5) imply 

( ) ( )1
1 1

1 (0.5) (0.5)(0.5) (0.5 )
1 1

n n
j i

j i

f ff f
C C

δ
−

= =

−
≥ − − ≥

− −∑ ∑
,  
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and therefore ( ) ( )1
1 1

1 (0.5) 1 1 / 1
n n

j

j i
f C C −

= =

i⎡ ⎤
≥ + − −⎢ ⎥

⎣ ⎦
∑ ∑

( )v z ≥

1( ( ) ( , ))v v z K C n−

. For any given  multiply both sides with 

  and note that the last inequality implies that . That is, getting z for 

sure is preferred to getting  or zero with even odds. 

z

( ,C n( )v z (0.5) ( ) )f v z K

To show inequality (a.4) note that 0.5 = nδ and that 

  
[ ] [ ]

[ ]

1

1 1

1

1

1(0.5) ( ) (( 1) ) ( ) (( 1) )
1

1(0.5) (0.5 )
1

in n

i i

in

i

f f i f i f n f n
C

f f
C

δ δ δ δ

δ

−

= =

−

=

⎛ ⎞= − − ≤ − − ⎜ ⎟−⎝ ⎠

⎛ ⎞= − − ⎜ ⎟−⎝ ⎠

∑ ∑

∑
 

where the inequality follows from inequality (a.3). Similarly, inequality (a.5) follows from  

   
[ ] [ ] ( )

[ ] ( )

2
1

1 1

1

1 (0.5) ( ) (( 1) ) (( 1) ) ( ) 1

(0.5) (0.5 ) 1

n n
j

j n j

n
j

j

f f j f j f n f n C

f f C

δ δ δ δ

δ

−

= + =

=

− = − − ≥ + − −

≥ − − −

∑ ∑

∑

 

Proof of Proposition 1 (dual theory of expected utility).  

In dual expected utility theory  If c > 2 then  ( ) .v z z= ( ) / ( ) 2v cz v z c= > and therefore  the general 

result 1 applies for this particular  ( )v z z= ; hence  for sure is preferred to getting  or zero 

with even odds. 

z ( , )zK c n

 

Proof of Corollary 1 (cumulative prospect theory and rank dependent utility theory).  

It is a straightforward application of the general result 1 for ( ) ( )v z zυ= . 

 

 
A.2. Proof of Proposition 2 and Corollary 2 

General result 2. Let a decision theory D with “utility functional” U  in statement (a.i) be given. We 

assume here that  is (weakly) concave. Suppose that  v

(a.iv) ax +  { , ; }x b p x+  for all ( , )x m M∈ , and  0,m >

(a.v) .  ( )bf p a>

We show that for all ( ln(1 ( )) / ln ,z m b b )f p q M∈ + + −

( ( )).q r

,  for all G  that satisfy 

inequality (*) in Proposition 2 with 

{ , ; }z G p m;

f p=  
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Proof. Let N be the largest integer smaller than (M-m)/b. This assumption and the definition of N 

imply  

(a.6)  , for all ( ) (1 ( )) ( ) ( ) ( )v x a f p v x f p v x b+ ≥ − + + ( , ).x m m Nb∈ +  

First we show that (a.6) and concavity of  imply that for all v y ( , )m m Nb∈ +  

 (a.7)  '( ) '( )jv y jb q v y+ ≤ , for all yj∈Ψ , 

where and { | ( 1) ( ,y j y j b m m NbΨ = ∈ + − ∈ +` )} (1/ ( ) 1) / ( / 1)q f p b a= − −  

Next let K be the largest integer smaller than ( ) /z m b− , and J be the smallest integer larger than 

( ) /G m b K− −  where G  is the expression on the right hand side of inequality (*) in the statement of 

Proposition 2. We show that     

(a.8)    ( ) ( ) ( ( ) ) (1 ( )) ( ).v m Kb f p v m K J b f p v m+ ≥ + + + −

This completes the proof since all G that satisfy inequality (*) also satisfy ( )G m K J b,< + +

( )) ( ).f p v m−

 which 

together with (a.8) and the definition of K imply v  ( ) ( ) ( ) (1z f p v G> +

To derive (a.7), first write ( ) ( ) ( ) (1 ( )) (v x a f p v x a f p v x a)+ = + + − + , next rewrite (a.6) 

with  x y= , and finally group together terms with factors ( )f p ( ) and 1 f p− on opposite sides of 

the inequality (a.6) to get 

(a.9)  [ ] [ ](1 ( )) ( ) ( ) ( ) ( ) ( )f p v y a v y f p v y b v y a− + − ≥ + − + y, ∀ ),( Nbmm +∈ .  

Inequalities [ ]( ) ( ) / ( ) '(v y b v y a b a v y b+ − + − ≥ + )  and [ ]( ) ( ) / '( ),v y a v y a v y+ − ≤

q

 (both 

following from the weak concavity of v ), inequality (a.9) and notation  imply  

(a.10)  
1 ( )'( ) '( ) '( )

( )
f p av y b v y qv y

f p b a
⎛ ⎞−

+ ≤ =⎜ ⎟−⎝ ⎠
, y∀ ),( Nbmm +∈ .  

Iteration of inequality (a.10) j  times, for ,yj∈Ψ   gives inequalities that together imply statement 

(a.7): 

 '( ) '( ( 1) ) '( ).jv y jb qv y j b q v y+ ≤ + − ≤ ≤…  

To show statement (a.8),   let y  denote  m Kb+  and note that if J K N+ >  then 
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(a.11)        

[ ]

( )

1

0

1

0

1

0

( ) ( ) ( ( 1) ) ( )

( ) ' ( ) '(

'( ) ( )

J

j

N K

j

N K
N K j

j

v y Jb v y v y j b v y jb

b J N K v y N K b v y jb

bv y q J N K q

−

=

− −

=

− −
−

=

+ − = + + − +

⎡ ⎤
≤ − + + − + +⎢ ⎥

⎣ ⎦
⎡ ⎤

≤ − + +⎢ ⎥
⎣ ⎦

∑

∑

∑

)

(In (a.11) the first inequality follows from (weak) concavity of ϕ  and J K N+ >  whereas the second 

one follows from statement (a.7).) If however J K N+ ≤  then one has  

(a.11’)  
1

0

1( ) ( ) '( ) '( )
1

JJ

j

qv z Jb v y b v y jb bv y
q

−

=

−
+ − ≤ + ≤

−∑    

Similarly, one can show that  

(a.12)   
1

0

1( ) ( ) '( )
K

k
k

v y v y bK bv y
q

−

=

− − ≥ ∑  

Hence, in case of , (a.11) and (a.12) imply that a sufficient condition for (a.8) is J K N+ >

(a.13)  
1 1

0 0

1(1 ( )) ( ) ( )
K N

N K j
k

k j

K

f p f p q J N K
q

− −
−

= =

q
−⎡ ⎤

− ≥ − + +⎢ ⎥
⎣ ⎦

∑ ∑   

Substitute 
1

0

1 ,
1

N KN K
j

j

qq
q

−− −

=

−
=

−∑  and 
11

0

1
1

KK

k
k

q q
qq

−−

=

−
=

−∑  in (a.13) to get 

(a.14)   
1 1 ( ) 1 1 1

( ) 1 1 1

K N K
N

N K

f p q q AJ N K q N K q
f p q q q bq

− −
−

−

⎛ ⎞− − −
≤ − + − = − + +⎜ ⎟− − −⎝ ⎠

 

The last inequality is true since  

( )
( )
( ) / 1 (2 1) / (1 ) / 1

/ (1 ) / 1

1 / (1 ) /

N

N

N

J G m b K M b q q Aq m b K

m bN bq q Aq m b K

N K q q A b

−

−

−

≤ − − + = + − − + − − +

≤ + + − + − − +

= − + − +

 

Finally, if  , (a.11’) and (a.12) imply that a sufficient condition for (a.8) is J K N+ ≤

(a.15)  ( )1 ( ) / (1 (Kq q ))f p f p− − > −  .  

Note that definition of K and ( ln(1 ( )) / ln ,z m b b )f p q M∈ + + −  imply 1 1 (Kq )f p− < − , hence   

(a.15) is satisfied.  
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Proof of Proposition 2 (expected utility theory).  

It is a straightforward application of the general result 2 for ( )f p p=  and . ( ) ( )v z u z=

 

Corollary 2 (cumulative prospect theory and rank dependent utility theory).  

It is a straightforward application of the general result 2 for ( ) ( )f p h p= and ( ) ( )v z zυ=  
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Appendix B. Additional Details of the Experiment Protocols 

 

B.1   Magdeburg Experiment for Probability Transformation Theories 

Once the subjects finished reading the instructions they were asked to mark their choices on the 

response form and write the ID number/letter that they had picked up at the beginning of the 

experiment on top of each sheet. After all subjects were done with their decisions, task 2 was given to 

them, which consisted of filling out a questionnaire. Again the subjects were asked to write the 

number/letter on the questionnaires that they had picked up. A subject’s responses were identified only 

by an identification code that that was the subject’s private information in order to protect their privacy 

with respect to answers on the questionnaire. At the end of the two tasks, the experimenter went to an 

adjoining room and called each of the students privately for payment. For each subject, a ball was 

drawn from a bingo cage containing balls numbered 1,2,…,9 to decide the relevant decision row and a 

ball was drawn from another bingo cage to determine the lottery payoff.  

 

B.2   Calcutta Experiment for Payoff Transformation Theories 

Each subject was asked to pick up a sheet of paper with either a number or a letter written on it. The 

subjects were presented with the instructions at the beginning of the session where the payment 

protocol of selecting one of the six tables randomly for money payoff (by rolling a six-sided die in the 

presence of the subject) was clearly explained to the subjects in the instructions as well as orally. The 

instructions also clarified that if they marked option I then the experimenter would flip a coin in front 

of the subject to choose between options A and B for him (if that decision was randomly selected for 

payoff). It was also clarified that if the subject chose the risky lottery in the selected decision task, then 

the lottery payment would be determined by flipping a coin in the presence of the subject.  

Once the subjects finished reading the instructions they were given six sheets of paper, each 

containing one of the rows from Table 6, and were asked to mark their choices for each table and write 

the number/letter that they had picked up at the beginning of the experiment on top of each sheet. 

After all subjects were done with their decisions, task 2 was given to them, which consisted of filling 
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out an income survey questionnaire. Again the subjects were asked to write the number/letter on the 

wealth questionnaires that they had picked up. A subject’s responses were identified only by an 

identification code that that was the subject’s private information in order to protect their privacy with 

respect to answers on the questionnaire. At the end of the two tasks, the experimenter went to an 

adjoining room and called each of the students privately for payment. For each subject, a die was 

rolled to decide the relevant payoff table. Further, if the subjects had marked the risky alternative in 

the selected table then a convention of paying the lower amount if the head came up and the higher 

amount if tails came up was announced to the student subject and incorporated. The student was asked 

to leave the questionnaire in a separate pile in order to protect privacy of responses. 

 

B.3  Magdeburg Contingent Payoff (Casino) Experiment for Payoff Transformation Theories 

After step 1 was finished the questionnaire was handed out to the participants. Every participant could 

choose whether to answer the questionnaire or not. She was paid 10 euros if she answered it. Since all 

participants could only be identified by a code the answers to the questionnaire could not be attributed 

to a personally-identifiable individual, but only to the choices 1-7 she made. All participants filled out 

the questionnaire. 

In Step 2 we selected three subjects randomly (in the presence of all of the subjects) to 

accompany the experimenter to the casino and verify that he bet the money as described above. After 

the visit to the casino, the experimenter and the three participants returned to the university and 

informed the remaining subjects about the results. If a participant would have won, we would have 

drawn the balls from an urn afterwards and correctly performed the coin flip. Step 2 was executed 

some hours later, on the same day as Step 1, after the casino opened. (As it turned out, none of the bets 

placed on a roulette wheel in the casino paid off.) 
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